Hereditary C*-Subalgebra Lattices

Tristan Bice

Institute of Mathematics of the Czech Academy of Sciences

Cuntz Semigroup Workshop 22nd of September 2022

Cuntz Subequivalence

When A = C₀(X), for locally compact Hausdorff X, Cuntz subequivalence ∠_{Cu} corresponds to ⊆ on supports, i.e.

$$a \precsim_{\mathrm{Cu}} b \quad \Leftrightarrow \quad \mathrm{supp}(a) \subseteq \mathrm{supp}(b),$$

for all $a, b \in A_+$, where $\operatorname{supp}(a) = \{x \in X : a(x) \neq 0\}$.

▶ X is 2nd countable \Rightarrow supports are the open subsets $\mathcal{O}(X)$ so

Cuntz equivalence classes \approx open set lattice $\mathcal{O}(X)$

with lattice operations $O \land N = O \cap N$ and $O \lor N = O \cup N$.

For noncommutative A, Cuntz equivalence classes may not be a lattice, hence we stabilise to obtain a semigroup structure

$$\operatorname{Cu}(A) = (A \otimes \mathcal{K})_+ / \sim .$$

Hereditary C*-Algebras

▶ A C*-subalg *B* of *A* is hereditary if $0 \le a \le b \in B \Rightarrow a \in B$.

• When $A = C_0(X)$, for any locally compact Hausdorff X,

Open Subsets $\mathcal{O}(X) \quad \leftrightarrow \quad$ Hereditary C*-Subalgebras $\mathcal{H}(A)$,

where $B \in \mathcal{H}(A)$ corresponds to $\operatorname{supp}(B) = \bigcup_{b \in B} \operatorname{supp}(b)$.

- ▶ Also $B \subseteq C \iff \operatorname{supp}(B) \subseteq \operatorname{supp}(C)$, i.e. $\mathcal{O}(X) \approx \mathcal{H}(A)$.
- But H(A) is a lattice even for noncommutative C*-algebra A:

 $B \wedge C = B \cap C$ and $B \vee C = HC^*(B \cup C)$

Surprisingly little known about H(A). Notable exceptions:

- Akemann's work on open projections in A^{**} (late 60's/70's).
- Giles and Kummer's work on q-topology (70's).
- Work of Mulvey and Rosický et al on quantales (80's).
- Related work on comparison of open projections, e.g. Peligrad-Zsido (2000), Rørdam-Ortega-Thiel (2011).

Unital vs Compact

• Can we detect whether A is unital from the lattice $\mathcal{H}(A)$?

Definition

Any lattice L with maximum 1 is said to be compact if, for any $C \subseteq L$ with $\bigvee C = 1$, we have finite $F \subseteq C$ with $\bigvee F = 1$.

$$\mathcal{O}(X)$$
 is compact \Leftrightarrow X is compact.
 $\mathcal{H}(C_0(X))$ is compact \Leftrightarrow $C_0(X)$ is unital.

Does this extend to non-commutative A? Yes.

Proposition (Rosický 1989)

A is unital precisely when $\mathcal{H}(A)$ is compact.

Proof: Assume *A* is non-unital.

• Case 1:
$$A = A_b = \overline{bAb}$$
 for some $b \in A_+$.

▶ Take $f_n \in C([0,1])_+$ which is 0 precisely on [0,1/n].

•
$$A_{f_n(a)}$$
 satisfy $\bigvee A_{f_n(a)} = A$ but $\bigvee_{n \le m} A_{f_n(a)} = A_{f_m(a)} \neq A$.

Unital vs Compact

Proposition (Rosický 1989)

A is unital precisely when $\mathcal{H}(A)$ is compact.

• Case 2:
$$A \neq A_b (= \overline{bAb})$$
 for any $b \in A_+$.

- ▶ A_b satisfy $\bigvee_{b \in A_+} A_b = A$ but, for any finite $F \subseteq A_+$, $\bigvee_{b \in F} A_b = A_{\sum F} \neq A$. In either case $\mathcal{H}(A)$ is not compact.
- Converse holds by a result of Akemann (1971).
- Alternatively use the order anti-isomorphism from hereditary C*-subalgebras to weak*-closed faces of states S(A):

$$B \mapsto B^{0} = \{ \phi \in S(A) : \phi[B] = \{0\} \}.$$

• If $C \subseteq \mathcal{H}(A)$ and $\bigvee C = A$ then $\bigwedge_{B \in C} B^0 = \emptyset$.

▶ If A is unital, S(A) is compact so we have finite $\mathcal{F} \subseteq \mathcal{C}$ with $\bigwedge_{B \in \mathcal{C}} B^0 = \emptyset$ and hence $\bigvee \mathcal{F} = A$, i.e. $\mathcal{H}(A)$ is compact. \Box

Corners vs Complements

• If $p \in \mathcal{P}(A) = \{p \in A : p = pp^*\}$ then $A_p = pAp$ is a corner.

• Can we detect corners in $\mathcal{H}(A)$ from the lattice structure?

Definition

In a lattice L with max 1 and min 0, $p, q \in L$ are complements if

 $p \lor q = 1$ and $p \land q = 0$.

 $O, N \in \mathcal{O}(X)$ are complements $\Leftrightarrow O \cup N = X$ and $O \cap N = \emptyset$. $O \in \mathcal{O}(X)$ has a complement $\Leftrightarrow O$ is clopen. $B \in \mathcal{H}(C_0(X))$ has a complement $\Leftrightarrow B$ is a corner (if X is compact).

Does this extend to non-commutative A? Yes.

Theorem (Akemann-B. 2015)

If A is unital, $B \in \mathcal{H}(A)$ is a corner iff it has a complement $C \in \mathcal{H}(A)$. Then $B = A_p$ and $C = A_q$ for $p, q \in \mathcal{P}(A)$ with

$$\|1-p-q\|<1.$$

Murray-von Neumann Equivalence vs Perspectivity

Definition (von Neumann 30's)

In a lattice L with max 1 and min 0, we call $p, q \in L$ perspective, written $p \sim_{per} q$, if they have a common complement.

- If A is unital and A_p and A_q have a common complement A_r then, by the previous result, ||r[⊥] − p||, ||r[⊥] − q|| < 1 and hence p ~_{MvN} r[⊥] ~_{MvN} q.
- \Rightarrow Perspectivity implies Murray-von Neuman equivalence.
- Could a weakening of perspectivity imply Cuntz equivalence?
- ▶ Possible approach: note we have a way-below analog in $\mathcal{H}(A)$:

$$B \ll C \qquad \Leftrightarrow \qquad \exists c \in C_+ \ \forall b \in B \ (bc = b = cb).$$

▶ When $B \ll C$, let us call $D \in \mathcal{H}(A)$ a complement of (B, C) if

$$B \wedge D = \emptyset$$
 and $C \vee D = A$.

Call C and E weakly perspective if, for all B ≪ C and D ≪ E, (B, C) and (D, E) have a common complement.
Conjecture(?) A_b ∼_{wper} A_c implies b ∼_{Cu} c.

Strong Orthogonality vs the Del Relation

• Can we detect when $B, C \in \mathcal{H}(A)$ are 'far apart'?

• Define orthogonality \perp and strong orthogonality \triangledown by

 $B \perp C \Leftrightarrow BC = \{0\}$ and $B \triangledown C \Leftrightarrow BAC = \{0\}.$

• We immediately see that, for any $B, C \in \mathcal{H}(A)$,

$$B \triangledown C \qquad \Rightarrow \qquad B \bot C \qquad \Rightarrow \qquad B \land C = \{0\}.$$

- Converses also hold when A is commutative.
- But \perp is not detectable from the lattice structure in general.
- ▶ E.g. $\mathcal{H}(M_2) \cong \mathcal{P}(M_2)$ and any permutation of $\mathcal{P}(M_2)$ preserving rank will be an order isomorphism.
- But ∇ is a different story...

Strong Orthogonality vs the Del Relation

Theorem (Akemann-B. 2015)

For $B, C \in \mathcal{H}(A)$, the following are equivalent.

- ► *B \approx C*.
- $\blacktriangleright B \lor C = B \oplus C.$
- ▶ $D = (B \lor D) \land (C \lor D)$, for all $D \in \mathcal{H}(A)$.
- ▶ $B \land D = B \land (C \lor D)$, for all $D \in \mathcal{H}(A)$ (the del relation).
- Every primitive/prime ideal in $\mathcal{H}(A)$ contains B or C.
- Every maximal/irreducible in $\mathcal{H}(A)$ contains B or C.
- *D* is irreducible if $B \wedge C = D$ implies B = D or C = D.
- Prime means irreducible in the ideal lattice $\mathcal{I}(A)$.
- Primitive \Rightarrow prime and conversely for separable A.
- Converse can fail for nonseparable A (Weaver 2001).
- Maximal \Rightarrow irreducible (conversely for commutative A).

Question (Akemann 2015)

Is every irreducible in $\mathcal{H}(A)$ maximal?

Ideals vs Distributors

• Can we detect the ideals $\mathcal{I}(A)$ in the lattice $\mathcal{H}(A)$? Definition

In a lattice L, we call $p \in L$ a distributor if, for all $q, r \in L$,

$$p \land (q \lor r) = (p \land q) \lor (p \land r).$$

- *L* is distributive \Leftrightarrow every $p \in L$ is a distributor.
- $\mathcal{O}(X)$ is always distributive while $\mathcal{H}(A)$ is not.
- ▶ $\mathcal{I}(A) \subseteq$ distributors (Borceaux-Rosický-Bossche 1989).

Theorem (Akemann-B. 2015)

The ideals are precisely of the distributors of $\mathcal{H}(A)$.

- ► (Mulvey 1986) quantale=lattice with a special & operator.
- *H*(*A*) is a quantale where *B*&*C* = *B* ∩ span(*ACA*) (in terms of the corresponding right ideals, *I*&*J* = *IJ*)
- But $\overline{\text{span}}(ACA)$ is the smallest distributive cover of C.
- \Rightarrow Order on $\mathcal{H}(A)$ already determines the quantale structure.

Annihilators

• The annihilator of any $B \subseteq A$ is defined by

$$B^{\perp} = \{ a \in A : Ba = Ba^* = \{ 0 \} \}.$$

We denote the collection of all annihilators by

$$\mathcal{A}(A) = \{B^{\perp} : B \subseteq A\} = \{B \subseteq A : B = B^{\perp \perp}\} \subseteq \mathcal{H}(A).$$

▶ $A_p \in \mathcal{A}(A)$, for $p \in \mathcal{P}(A)$. Converse holds if A is a vN algebra.

- Annihilators still plentiful in C*-algebras, unlike projections.
- If $B \subseteq C_0(X)$ then $\operatorname{supp}(B^{\perp}) = \operatorname{int}(X \setminus \operatorname{supp}(B))$.
- \Rightarrow Annihilator supports are regular(=interior of a closed set).
- Conversely, $B \in \mathcal{H}(A)$ and $\operatorname{supp}(B)$ is regular $\Rightarrow B = B^{\perp \perp}$.
- So annihilators \approx regular open subsets.

Annihilators vs Separative Elements

• Can we detect annihilators in the lattice $\mathcal{H}(A)$?

Definition

In a lattice L with minimum 0, we say p separates q from r when

$$0 \neq p \leq r$$
 and $p \wedge q = 0$.

If q is separated from every $r \nleq q$ then we call q separative.

- ▶ Say $O, R \in \mathcal{O}(X)$, R is regular and $O \nsubseteq R$. Then $O \nsubseteq \overline{R}$ (otherwise $O = O^{\circ} \subseteq \overline{R}^{\circ} = R$) so $O \setminus \overline{R}$ separates R from O.
- ▶ If $N \in \mathcal{O}(X)$ is not regular then $N \subsetneq \overline{N}^\circ$. But N is not separated from \overline{N}° , by the definition of closure.
- ▶ So in $\mathcal{O}(X)$, separative \Leftrightarrow regular. Thus, for $B \in \mathcal{H}(C_0(X))$,

B is separative \Leftrightarrow *B* is an annihilator.

▶ Does this generalise? No (e.g. $A = C([0, 1]) \otimes \mathcal{K})$ but

Theorem (Akemann-B. 2015)

Every annihilator is separative in $\mathcal{H}(A)$.

Type Decompositions

• $\mathcal{A}(A)$ is a separative ortholattice with orthocomplement B^{\perp} ,

 $B \wedge C = B \cap C$ and $B \vee C = (B \cup C)^{\perp \perp}$.

This automatically gives us various type decompositions.

- E.g. let us call an element p of a lattice L,
 - distributive if $p \downarrow = \{q \in L : q \le p\}$ is a distributive sublattice.
 - semi-distributive if each $q \leq p$ dominates a distributive $d \neq 0$.
 - anti-distributive if no non-zero $q \leq p$ is distributive.

Proposition

If L is a sep. ortholattice, we have unique central complements $p, q \in L$ such that p is semi-distributive and q is anti-distributive.

▶ If $B \in \mathcal{A}(A)$ then

- *B* is distributive \Leftrightarrow *B* is commutative
- B is semi-distributive \Leftrightarrow
- *B* is discrete (Peligrad-Zsido 2001)
- B is anti-distributive \Leftrightarrow B is antiliminary

Type Decompositions

Corollary (Akemann-B. 2015) (Ng-Wong 2016)

Any C*-algebra A has unique orthogonal annihilator ideals B and C such that $A = B \lor C$, B is discrete and C is antiliminary.

- ▶ If A is a von Neumann or AW^* algebra above then B is the type I part and C is type II+III part of A (and $A = B \oplus C$).
- Replacing 'distributive' with 'modular' we get another decomposition A = B ∨ C. If A is an AW* algebra then in this case B is the type I+II part while C is the type III part.
- ▶ Replacing with 'orthomodular', we get another decomposition A = B ∨ C. If A is an AW* algebra then in this case B = A and C = {0} because A(A) ≈ P(A) is always orthomodular.
- However, annihilators are not always orthomodular so for general C*-algebras this 'type IV part' may be non-zero.

Question

Do there exist any type IV C*-algebras?