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Cuntz Subequivalence

I When A = C0(X ), for locally compact Hausdorff X ,
Cuntz subequivalence -Cu corresponds to ⊆ on supports, i.e.

a -Cu b ⇔ supp(a) ⊆ supp(b),

for all a, b ∈ A+, where supp(a) = {x ∈ X : a(x) 6= 0}.
I X is 2nd countable ⇒ supports are the open subsets O(X ) so

Cuntz equivalence classes ≈ open set lattice O(X )

with lattice operations O ∧ N = O ∩ N and O ∨ N = O ∪ N.

I For noncommutative A, Cuntz equivalence classes may not be
a lattice, hence we stabilise to obtain a semigroup structure

Cu(A) = (A⊗K)+/ ∼ .



Hereditary C*-Algebras

I A C*-subalg B of A is hereditary if 0 ≤ a ≤ b ∈ B ⇒ a ∈ B.

I When A = C0(X ), for any locally compact Hausdorff X ,

Open Subsets O(X ) ↔ Hereditary C*-Subalgebras H(A),

where B ∈ H(A) corresponds to supp(B) =
⋃

b∈B supp(b).

I Also B ⊆ C ⇔ supp(B) ⊆ supp(C ), i.e. O(X ) ≈ H(A).

I But H(A) is a lattice even for noncommutative C*-algebra A:

B ∧ C = B ∩ C and B ∨ C = HC ∗(B ∪ C )

I Surprisingly little known about H(A). Notable exceptions:
I Akemann’s work on open projections in A∗∗ (late 60’s/70’s).
I Giles and Kummer’s work on q-topology (70’s).
I Work of Mulvey and Rosický et al on quantales (80’s).
I Related work on comparison of open projections, e.g.

Peligrad-Zsido (2000), Rørdam-Ortega-Thiel (2011).



Unital vs Compact

I Can we detect whether A is unital from the lattice H(A)?

Definition
Any lattice L with maximum 1 is said to be compact if, for any
C ⊆ L with

∨
C = 1, we have finite F ⊆ C with

∨
F = 1.

O(X ) is compact ⇔ X is compact.

H(C0(X )) is compact ⇔ C0(X ) is unital.

I Does this extend to non-commutative A? Yes.

Proposition (Rosický 1989)

A is unital precisely when H(A) is compact.

I Proof: Assume A is non-unital.

I Case 1: A = Ab = bAb for some b ∈ A+.

I Take fn ∈ C ([0, 1])+ which is 0 precisely on [0, 1/n].

I Afn(a) satisfy
∨
Afn(a) = A but

∨
n≤m Afn(a) = Afm(a) 6= A.



Unital vs Compact

Proposition (Rosický 1989)

A is unital precisely when H(A) is compact.

I Case 2: A 6= Ab(= bAb) for any b ∈ A+.

I Ab satisfy
∨

b∈A+
Ab = A but, for any finite F ⊆ A+,∨

b∈F Ab = A∑
F 6= A. In either case H(A) is not compact.

I Converse holds by a result of Akemann (1971).

I Alternatively use the order anti-isomorphism from hereditary
C*-subalgebras to weak*-closed faces of states S(A):

B 7→ B0 = {φ ∈ S(A) : φ[B] = {0}}.

I If C ⊆ H(A) and
∨
C = A then

∧
B∈C B

0 = ∅.
I If A is unital, S(A) is compact so we have finite F ⊆ C with∧

B∈C B
0 = ∅ and hence

∨
F = A, i.e. H(A) is compact. �



Corners vs Complements
I If p ∈ P(A) = {p ∈ A : p = pp∗} then Ap = pAp is a corner.
I Can we detect corners in H(A) from the lattice structure?

Definition
In a lattice L with max 1 and min 0, p, q ∈ L are complements if

p ∨ q = 1 and p ∧ q = 0.

O,N ∈ O(X ) are complements ⇔ O ∪ N = X and O ∩ N = ∅.
O ∈ O(X ) has a complement ⇔ O is clopen.

B ∈ H(C0(X )) has a complement ⇔ B is a corner (if X is compact).

I Does this extend to non-commutative A? Yes.

Theorem (Akemann-B. 2015)

If A is unital, B ∈ H(A) is a corner iff it has a complement
C ∈ H(A). Then B = Ap and C = Aq for p, q ∈ P(A) with

‖1− p − q‖ < 1.



Murray-von Neumann Equivalence vs Perspectivity

Definition (von Neumann 30’s)

In a lattice L with max 1 and min 0, we call p, q ∈ L perspective,
written p ∼per q, if they have a common complement.

I If A is unital and Ap and Aq have a common complement Ar

then, by the previous result, ‖r⊥−p‖, ‖r⊥−q‖ < 1 and hence

p ∼MvN r⊥ ∼MvN q.

⇒ Perspectivity implies Murray-von Neuman equivalence.
I Could a weakening of perspectivity imply Cuntz equivalence?
I Possible approach: note we have a way-below analog in H(A):

B � C ⇔ ∃c ∈ C+ ∀b ∈ B (bc = b = cb).

I When B � C , let us call D ∈ H(A) a complement of (B,C ) if

B ∧ D = ∅ and C ∨ D = A.

I Call C and E weakly perspective if, for all B � C and
D � E , (B,C ) and (D,E ) have a common complement.

I Conjecture(?) Ab ∼wper Ac implies b ∼Cu c .



Strong Orthogonality vs the Del Relation

I Can we detect when B,C ∈ H(A) are ‘far apart’?

I Define orthogonality ⊥ and strong orthogonality O by

B ⊥ C ⇔ BC = {0} and B O C ⇔ BAC = {0}.

I We immediately see that, for any B,C ∈ H(A),

B O C ⇒ B ⊥ C ⇒ B ∧ C = {0}.

I Converses also hold when A is commutative.

I But ⊥ is not detectable from the lattice structure in general.

I E.g. H(M2) ∼= P(M2) and any permutation of P(M2)
preserving rank will be an order isomorphism.

I But O is a different story...



Strong Orthogonality vs the Del Relation

Theorem (Akemann-B. 2015)

For B,C ∈ H(A), the following are equivalent.

I B O C .

I B ∨ C = B ⊕ C .

I D = (B ∨ D) ∧ (C ∨ D), for all D ∈ H(A).

I B ∧ D = B ∧ (C ∨ D), for all D ∈ H(A) (the del relation).

I Every primitive/prime ideal in H(A) contains B or C .

I Every maximal/irreducible in H(A) contains B or C .

I D is irreducible if B ∧ C = D implies B = D or C = D.
I Prime means irreducible in the ideal lattice I(A).
I Primitive ⇒ prime and conversely for separable A.
I Converse can fail for nonseparable A (Weaver 2001).
I Maximal ⇒ irreducible (conversely for commutative A).

Question (Akemann 2015)

Is every irreducible in H(A) maximal?



Ideals vs Distributors
I Can we detect the ideals I(A) in the lattice H(A)?

Definition
In a lattice L, we call p ∈ L a distributor if, for all q, r ∈ L,

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r).

I L is distributive ⇔ every p ∈ L is a distributor.
I O(X ) is always distributive while H(A) is not.
I I(A) ⊆ distributors (Borceaux-Rosický-Bossche 1989).

Theorem (Akemann-B. 2015)

The ideals are precisely of the distributors of H(A).

I (Mulvey 1986) quantale=lattice with a special & operator.
I H(A) is a quantale where B&C = B ∩ span(ACA)

(in terms of the corresponding right ideals, I&J = IJ)
I But span(ACA) is the smallest distributive cover of C .

⇒ Order on H(A) already determines the quantale structure.



Annihilators

I The annihilator of any B ⊆ A is defined by

B⊥ = {a ∈ A : Ba = Ba∗ = {0}}.

I We denote the collection of all annihilators by

A(A) = {B⊥ : B ⊆ A} = {B ⊆ A : B = B⊥⊥} ⊆ H(A).

I Ap ∈ A(A), for p ∈ P(A). Converse holds if A is a vN algebra.

I Annihilators still plentiful in C*-algebras, unlike projections.

I If B ⊆ C0(X ) then supp(B⊥) = int(X \ supp(B)).

⇒ Annihilator supports are regular(=interior of a closed set).

I Conversely, B ∈ H(A) and supp(B) is regular ⇒ B = B⊥⊥.

I So annihilators ≈ regular open subsets.



Annihilators vs Separative Elements
I Can we detect annihilators in the lattice H(A)?

Definition
In a lattice L with minimum 0, we say p separates q from r when

0 6= p ≤ r and p ∧ q = 0.

If q is separated from every r � q then we call q separative.

I Say O,R ∈ O(X ), R is regular and O * R. Then O * R
(otherwise O = O◦ ⊆ R

◦
= R) so O \ R separates R from O.

I If N ∈ O(X ) is not regular then N $ N
◦
. But N is not

separated from N
◦
, by the definition of closure.

I So in O(X ), separative ⇔ regular. Thus, for B ∈ H(C0(X )),

B is separative ⇔ B is an annihilator.

I Does this generalise? No (e.g. A = C ([0, 1])⊗K) but

Theorem (Akemann-B. 2015)

Every annihilator is separative in H(A).



Type Decompositions
I A(A) is a separative ortholattice with orthocomplement B⊥,

B ∧ C = B ∩ C and B ∨ C = (B ∪ C )⊥⊥.

I This automatically gives us various type decompositions.
I E.g. let us call an element p of a lattice L,

I distributive if p↓ = {q ∈ L : q ≤ p} is a distributive sublattice.
I semi-distributive if each q ≤ p dominates a distributive d 6= 0.
I anti-distributive if no non-zero q ≤ p is distributive.

Proposition

If L is a sep. ortholattice, we have unique central complements
p, q ∈ L such that p is semi-distributive and q is anti-distributive.

I If B ∈ A(A) then

B is distributive ⇔ B is commutative

B is semi-distributive ⇔ B is discrete (Peligrad-Zsido 2001)

B is anti-distributive ⇔ B is antiliminary



Type Decompositions

Corollary (Akemann-B. 2015) (Ng-Wong 2016)

Any C*-algebra A has unique orthogonal annihilator ideals B and
C such that A = B ∨ C , B is discrete and C is antiliminary.

I If A is a von Neumann or AW ∗ algebra above then B is the
type I part and C is type II+III part of A (and A = B ⊕ C ).

I Replacing ‘distributive’ with ‘modular’ we get another
decomposition A = B ∨ C . If A is an AW∗ algebra then in this
case B is the type I+II part while C is the type III part.

I Replacing with ‘orthomodular’, we get another decomposition
A = B ∨ C . If A is an AW∗ algebra then in this case B = A
and C = {0} because A(A) ≈ P(A) is always orthomodular.

I However, annihilators are not always orthomodular so for
general C*-algebras this ‘type IV part’ may be non-zero.

Question
Do there exist any type IV C*-algebras?


