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Motivation (Wreath products)

Let G, H be discrete groups. The wreath product H? G is defined
as the semidirect product

(@gEG H) X G wrt g ((hs)seG) = (hgfls)seG-
Aim: Want to compute K. (C(H ! G)).
Observation: Cf(H1G) = C;(@¢ H) x, G = C;(H)®® x, G since

Ci(@6H) = lim C/(@¢H) = lim C; (H)*F = C; (H)*°

and the action transforms to the Bernoulli action on C}(H)®¢
given by shifting the tensor factors!

More generally: A unital C*-algebra, A®C := limpcg A%F w.rt.
ASF 5 ABF s x @ 1 VF CF

Problem: Compute K,(A®¢ x, G)!



Previous results

» Bratteli, Kishimoto, Rgrdam, Stgrmer, 1993 For
B = M5% x 7 they show Ko(B) = Z[1] = Ki(B).
» Ohhashi, 2015 A®Z % Z if A is in the bootstrap class and
Z — Ko(A); n+— n[la] is split injective.
» Flores, Pooya, Valette '17: H!Z with H finite.
Pooya '19 H{ F, with H finite, IF» free group in 2 generators.

> Xin Li '19 H G with H finite and G satisfies the
Baum-Connes conjecture with coefficients.

v

Indeed, if H is finite, C*(H) = C @ B for some finite dim. B.

Xin Li computed K.(A®® x, G) for all fin. dim. A= C o B,
motivated by some previous work on K-theory of Co(2) X, G with
Q totally disconnected by Cuntz-E-Li.

(if A= C", then A®C = C(Q) with Q = {1,...,n}C Cantor set.)



The Baum-Connes conjecture

Definition The group G satisfies the Baum-Connes conjecture with
coefficients (BCC) if for all G-C*-algebras A, the assembly map

pa: KE(E(G); A) = K.(Ax, G)

is an isomorphism.

Theorem (Chabert-E-Oyono-Oyono '04, Meyer-Nest '06)
G satisfies BCC if and only if the following holds true:

If € KKC®(A, B) for a pair of G-algebras A, B such that
dxH:K(AxH) S K(BxH) Vfinite HC G.

Then N
O, G K (Ax, G) = Ki(B x, G).

This is the main tool for our computations!



The first step
The next major tool is the following result due to lzumi (in case
A, B nuclear, H = 7Z/27) and Szabo (general A, B).
Theorem (lzumi, CEKN)
Let H be a finite group, Z a finite H-space. Then every
KK-equivalence ¢ € KK(A, B) induces an H-equivariant

KK-equivalence
¢®Z c KKH(A®Z7 B®Z).

Corollary (CEKN) Suppose that G satisfies BCC and A and B are
unital C*-algebras. Let ¢ : A — B be a unital x-homomorphism
which induces a KK-equivalence. Then

%€ %1, G, : K (A®C x, G) 5 K.(B®C x, G).
Proof Show that ¢®€ x H, : K.(A®C x H) = K,(B®C x H) for
every finite H C G! But if Z runs through H-inv finite sets in G:

A®G x H = limz(A®Z A H) ~NKK 1imz(B®Z X H) = B®G x H
El



The finite dimensional case
Lemma Let A= M,,(C) & --- & M, (C) be a finite dimensional
C*-algebra such that ged{np,...,n;} = 1. Then there exists a
unital *-homomorphism ¢ : C'*1 — A which induces a
KK-equivalence.

|dea of proof One can show that for every tupel (ng, ..., n;) with
ged{ng,...,n} = n, there exist a matrix X € GL(/ + 1,Z) with
positive entries such that X(n,...,n)" = (no,...,n)".

Then use the fact that unital *-homomorphism C/*1 — A are
classified by the maps they induce on the Kp-groups. If n =1, this
gives the result! O

Corollary (CEKN) Let A be as above and let G sat. BCC. Then
K.(A®C %, G) = K,.((C*1)®° x, G)

L
2 K(cieNe P P P K(C)
[CleC [X]eNC\F(C) [S]eC\{L,...,1}X

[C = conj cl of fin HC G, N¢ = normalizer of C, Cs = C N.Gs.]



The general finite dimensional case

Let A= Mp,(C) & --- & Mp,(C) be a finite dimensional C*-algebra
with ged{ng,...,n} = n. Then

A=ZM,(C)® B with B=Mpn(C)&- - & My, (C)

and ged{mog, -+ ,m;} = 1.

Theorem (Kranz-Nishikawa '22)
Suppose G satisfies BCC and |G| = co. Let B be a unital
C*-algebra and let A= M,(C) ® B. Then

1
K.(A®C %, G) = K,(B®® x, G) [n] .

A similar result holds for finite G if we replace M,(C) by
Moo := Mp(C)®N.

Corollary Ki(MS” x Z) = K.(C x Z)[3] = Z[3] & Z[3].



Proof in case G torsion free
The result follows from the going-down principle:

Let G act trivially on M, and consider the G-inclusions

1
(B@Mn)®cQ(B@MH)Q@G@M?;ZHz@l

2
BZS & M 2 (B My)®C @ M®: x @ b s (x© 1) @ b.

Since My is strongly self absorbing, both maps induce
KK-equivalences when restricted to the trivial group.

Thus, if G is torsion free and satisfies BCC, we get

(1)
K ((B® My)®C %, G) =2 K. (((B® M,)®¢ @ M) %, G)

(2)
=~ K, ((B®° @ M°) x, G)
~ K, ((B¥C x G) @ Mye)

— K.(B%S x, G) m .



A more general strategy — the algebra J5.
Want to consider the following situation:
Let A be a unital C*-algebra and let ¢ : C — A; A +— Als. Assume
that B is any C*-algebra and ¢ € KK(B, A) such that

L® P e KK(Co B,A) is a KK-equivalence.
We want to compute K,(A®C x, G) in terms of (a substitute of)
“(C @ B)®® x, G" using lzumi's result for finite groups!

Notice: (C @ B)®C does not exist if C @ B is not unital. Even if
C @ B is unital, ¢t ® ¢ is not a unital x-homomorphism, so the
previous results do not apply!

Definition For a group G and a C*-algebra B we define

Tg = EB B®F with BY :=C,
FEFIN(G)

where FIN(G) denotes the collection of finite subsets of G,
equipped with G-action sending B®F to B®8F g € G.



The algebra Jp

Lemma We have  Jp = limgseping)(C @ B)®?.
Proof Simply observe that VS € FIN(G):

F
(C@ B)®5 _ @C@)S\F@ BO®F — @ B®F
FCS FCS

The discrete G-space FIN(G) decomposes into the G-orbits
{G - F:[F] € G\FIN(G)} and hence Jg decomposes as

= P (P B* )= PH Indg B*F

[FIeG\FIN(G) [g]leG/GF [F1leG\ FIN(G)

where Gr = {g € G : gF = F} and IndZ_B®F = Co(G x¢, B®F)
denotes the G-algebra induced from the Gg-algebra B®F.



Main theorem

Main theorem (CEKN) Suppose G satisfies BCC, A is unital,
t: C — Cla C A the unital inclusion, and ¢ € KK (B, A) such that
L® ¢ € KK(Co B,A) is a KK-equivalence. Then

(1) 2)
K(A®C %, G) 2 K(Te %, G) = @ Ku(B®F %, Gp).
[F]leG\ FIN(G)

Remark For F = we get B %, Gy = C x, G = C/(G).
If F % () we always have Gf finite (trivial if G torsion free)! Hence

K(A%C %, G) 2 K(CH(G) e D KB x Gp).
[F]EG\FIN‘*’(G)

and if G is torsion free, we get

K(A®C %, G) = K(CH(G)e P K(B®F).
[F]GG\FIN‘*’(G)



Main theorem

Main theorem (CEKN) Suppose G satisfies BCC, A is unital,
t: C — Cla C A the unital inclusion, and ¢ € KK(B, A) such that
L® ¢ € KK(Co B,A) is a KK-equivalence. Then

(1) 2)
K(A% %, G) 2 Ku(Te», G) = @ KB x, Gp).
[FIeG\ FIN(G)

Proof of 2nd iso: By decomposing Jg over G-orbits, we get

e G= P (Indg, B ) %, G ~omoria P B % Gr,
G\ FIN(G) G\ FIN(G)



Proof of main theorem
Proof of 1st Iso: Need to show Ki(Jg %, G) = K.(A®® x, G).
Using Jg = @G\HN IndG B®F  we get
KK®(Js,A%¢) = [] KKC(Indg B=F,6A®C)
G\ FIN(G)
[T Kk (B®F, A%).
G\ FIN(G)

I

L ®F
Let o = [B@’F < (C @ B)®F 22 A®F] e KKGF(BEF, A%6)

and ¥ := (VF)[Flec\ FIN(G) € KK€(TB, A®€).
Now let H C G be a finite subgroup. Then, for every finite
H-invariant set S C G, 9 restricts to the KKH-equivalence

vs: @ BF = (Cao B)®> =4 A®°
FCS

Taking limits over S gives ¥ x H : Ky(Jg x H) = K.(A®C x H).



Applications of the main theorem
Corollary Suppose that A is unital with UCT such that
t:C — Cla C Ainduces a split injection ¢, : Ki(C) — K. (A).
Let B be any C*-algebra with UCT s.t. K,(B) = cokern(ct,). Then

K(A%C %, G) = K (CH(G)d P K(B¥F x,GF).
[F]€G\ FINT(G)

Proof: By the assumption 3¢ € KK (B, A) such that
L® ¢ € KK(Co B, A) is a KK-equivalence.
Corollary A= M,,(C) & - - - & M,,(C) with ged{ng,...,n} = 1.
Then 1, : Ki(C) — K.(A) is split injective and with B = C/~1:
K(AC %, 6)= P K((C) xGp)
[FleG\ FIN(G)
~K(CG(EN® D K(CUL....]}F) % Gr)
[FIEG\FINT(G)

which easily gives the formula of Xin Li we saw, before!



Wreath products

Consider a wreath product H! G such that H is a-T-menable
(or, more generally, H satisfies the strong Baum-Connes
conjecture) and G satisfies BCC.

Then Jean-Luis Tu showed that C}(H) satisfies the UCT and H is
K-amenable (hence C;(H) ~kx C*(H)). It follows that

C - Cey C C*(H) 25 €

induces a split injection ¢, : K (C) — K.(C*(H)) = K.(C}(H)).
Thus, if B is any C*-algebra with UCT s.t. K.(B) = cokern(t)

we get

KC(HG)) = K(CI(H)®x,G) = @D Ku(B® x,Gp).
[F]leG\ FIN(G)

Example If H =T, we can choose B = P/_; Co(R) and the
groups K.(B®F x, Gf) can be computed explicitly.



More examples
> Let A= C(T) ~kxk Cd Co(R). Then

K(C(T)®Cx,G) 2 K(C' (G D  K(Co(R)*FxGF)
[FleG\ FINT(G)

The groups K.(Co(R)®F x Gr) = KEF(RIFI) have been
computed by Karoubi '02 and/or E-Pfante '09.

> Let A = Ay (ir)rational rotation algebra. We have
Ap ~KK C(T2) ~kx Cd B with B=C® Co(R) ©® Co(]R)
K.(ASC %, G)
= K(CH(G)) Blecy Fint (6) K+(C @ Go(R) & Go(R))®" x Gr).

The algebras (C @ Go(R) @ Go(R))®F x Gr decompose into
direct sums of the form Cy(R') x H for some / and H C GF,
and are therefore all computable.

L



Cuntz algebras
Since Oy ~kx C and Oy ~kk {O} we get
K (O2° x, G) =2 K.(C(G)) and K.(O5€ x, G) = {0}.

For general n € N, one has Op41 ® M ~kk {0}, hence
1 [e.o]
K035, 4: 6) || = K((Onia M), 6) = (0}
Notice If B satsifies UCT and K.(B) is finitely generated, then

B ~kk P Bi with B;=C, Go(R), On, Go(R) @ O
i=1

Then (for F # () B®F x Gg decomposes into direct sums of
crossed products of the form D x H, where D is a finite tensor
product of the B; and H C Gp is finite.

Open problem: Compute
K.(0%% % H) and K.((G(R)® 0,)%% x H)



Further results

We can prove a quite technical formula if A is an AF-algebra. If A
is AF and G is torsion-free, the formula reads

Ko(A®C %, G) = Ku(CH(G))[STH @ Ku(A®C)g.
where
S:={neN|[1a] € Ko(A) divisible by n}

and K.(A®€)¢ denotes the coinvariants for G ~ K,(A®¢), the
largest quotient of K,(A®) with trivial G-action!

In a recent preprint, Julian Kranz and Shintaro Nishikawa extended
some of the methods presented here to the setting of the
Farrel-Jones conjectures in algebraic topology.
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Happy birthday, Mikael!



