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Motivation (Wreath products)

Let G ,H be discrete groups. The wreath product H ≀ G is defined
as the semidirect product(

⊕g∈G H
)
⋊ G w.r.t g ·

(
(hs)s∈G

)
= (hg−1s)s∈G .

Aim: Want to compute K∗(C
∗
r (H ≀ G )).

Observation: C ∗
r (H ≀G ) ∼= C ∗

r (
⊕

G H)⋊r G ∼= C ∗
r (H)⊗G ⋊r G since

C ∗
r (⊕GH) = lim

F⊆G
C ∗
r (⊕FH) = lim

F⊆G
C ∗
r (H)⊗F = C ∗

r (H)⊗G

and the action transforms to the Bernoulli action on C ∗
r (H)⊗G

given by shifting the tensor factors!

More generally: A unital C ∗-algebra, A⊗G := limF⊆G A⊗F w.r.t.

A⊗F → A⊗F ′
: x 7→ x ⊗ 1A⊗F ′\F ∀F ⊆ F ′.

Problem: Compute K∗(A
⊗G ⋊r G )!



Previous results

▶ Bratteli, Kishimoto, Rørdam, Størmer, 1993 For
B = M⊗Z

2 ⋊ Z they show K0(B) ∼= Z[12 ] = K1(B).
▶ Ohhashi, 2015 A⊗Z ⋊ Z if A is in the bootstrap class and

Z → K0(A); n 7→ n[1A] is split injective.

▶ Flores, Pooya, Valette ’17: H ≀ Z with H finite.

▶ Pooya ’19 H ≀ F2 with H finite, F2 free group in 2 generators.

▶ Xin Li ’19 H ≀ G with H finite and G satisfies the
Baum-Connes conjecture with coefficients.

Indeed, if H is finite, C ∗(H) ∼= C⊕ B for some finite dim. B.

Xin Li computed K∗(A
⊗G ⋊r G ) for all fin. dim. A ∼= C⊕ B,

motivated by some previous work on K -theory of C0(Ω)⋊r G with
Ω totally disconnected by Cuntz-E-Li.

(if A ∼= Cn, then A⊗G = C (Ω) with Ω = {1, . . . , n}G Cantor set.)



The Baum-Connes conjecture

Definition The group G satisfies the Baum-Connes conjecture with
coefficients (BCC) if for all G -C ∗-algebras A, the assembly map

µA : KG
∗ (E (G );A) → K∗(A⋊r G )

is an isomorphism.

Theorem (Chabert-E-Oyono-Oyono ’04, Meyer-Nest ’06)
G satisfies BCC if and only if the following holds true:

If ϕ ∈ KKG (A,B) for a pair of G -algebras A,B such that

ϕ⋊ H : K∗(A⋊ H)
∼=→ K∗(B ⋊ H) ∀ finite H ⊆ G .

Then
ϕ⋊r G : K∗(A⋊r G )

∼=→ K∗(B ⋊r G ).

This is the main tool for our computations!



The first step
The next major tool is the following result due to Izumi (in case
A,B nuclear, H = Z/2Z) and Szabo (general A,B).

Theorem (Izumi, CEKN)
Let H be a finite group, Z a finite H-space. Then every
KK -equivalence ϕ ∈ KK (A,B) induces an H-equivariant
KK -equivalence

ϕ⊗Z ∈ KKH(A⊗Z ,B⊗Z ).

Corollary (CEKN) Suppose that G satisfies BCC and A and B are
unital C ∗-algebras. Let ϕ : A → B be a unital ∗-homomorphism
which induces a KK -equivalence. Then

ϕ⊗G ⋊r G∗ : K∗(A
⊗G ⋊r G )

∼=→ K∗(B
⊗G ⋊r G ).

Proof Show that ϕ⊗G ⋊ H∗ : K∗(A
⊗G ⋊ H)

∼=→ K∗(B
⊗G ⋊ H) for

every finite H ⊆ G ! But if Z runs through H-inv finite sets in G :

A⊗G ⋊ H = limZ (A
⊗Z ⋊ H) ∼KK limZ (B

⊗Z ⋊ H) = B⊗G ⋊ H



The finite dimensional case
Lemma Let A = Mn1(C)⊕ · · · ⊕Mnl (C) be a finite dimensional
C ∗-algebra such that gcd{n0, . . . , nl} = 1. Then there exists a
unital ∗-homomorphism ϕ : Cl+1 → A which induces a
KK -equivalence.

Idea of proof One can show that for every tupel (n0, . . . , nl) with
gcd{n0, . . . , nl} = n, there exist a matrix X ∈ GL(l + 1,Z) with
positive entries such that X (n, . . . , n)t = (n0, . . . , nl)

t .

Then use the fact that unital ∗-homomorphism Cl+1 → A are
classified by the maps they induce on the K0-groups. If n = 1, this
gives the result!

Corollary (CEKN) Let A be as above and let G sat. BCC. Then

K∗(A
⊗G ⋊r G ) ∼= K∗((Cl+1)

⊗G ⋊r G )

X .Li∼= K∗(C
∗
r (G ))⊕

⊕
[C ]∈C

⊕
[X ]∈NC\F (C)

⊕
[S]∈C\{1,...,l}CX

K∗(CS)

[C = conj cl of fin H ⊆ G , NC = normalizer of C , CS = C ∩ GS .]



The general finite dimensional case

Let A = Mn0(C)⊕ · · · ⊕Mnl (C) be a finite dimensional C ∗-algebra
with gcd{n0, . . . , nl} = n. Then

A ∼= Mn(C)⊗ B with B = Mm0(C)⊕ · · · ⊕Mml
(C)

and gcd{m0, · · · ,ml} = 1.

Theorem (Kranz-Nishikawa ’22)
Suppose G satisfies BCC and |G | = ∞. Let B be a unital
C ∗-algebra and let A = Mn(C)⊗ B. Then

K∗(A
⊗G ⋊r G ) ∼= K∗(B

⊗G ⋊r G )

[
1

n

]
.

A similar result holds for finite G if we replace Mn(C) by
Mn∞ := Mn(C)⊗N.

Corollary K∗(M
⊗Z
2 ⋊ Z) ∼= K∗(C⋊ Z)[12 ] = Z[12 ]⊕ Z[12 ].



Proof in case G torsion free
The result follows from the going-down principle:

Let G act trivially on Mn∞ and consider the G -inclusions

(B ⊗Mn)
⊗G (1)

↪→ (B ⊗Mn)
⊗G ⊗M∞

n ; z 7→ z ⊗ 1

B⊗G ⊗M∞
n

(2)
↪→ (B ⊗Mn)

⊗G ⊗M∞
n ; x ⊗ b 7→ (x ⊗ 1)⊗ b.

Since Mn∞ is strongly self absorbing, both maps induce
KK -equivalences when restricted to the trivial group.

Thus, if G is torsion free and satisfies BCC, we get

K∗((B ⊗Mn)
⊗G ⋊r G )

(1)∼= K∗
(
((B ⊗Mn)

⊗G ⊗M∞
n

)
⋊r G

)
(2)∼= K∗

(
(B⊗G ⊗M∞

n )⋊r G )

∼= K∗
(
(B⊗G ⋊ G )⊗Mn∞

)
= K∗(B

⊗G ⋊r G )

[
1

n

]
.



A more general strategy – the algebra JB .
Want to consider the following situation:
Let A be a unital C ∗-algebra and let ι : C → A;λ 7→ λ1A. Assume
that B is any C ∗-algebra and ϕ ∈ KK (B,A) such that

ι⊕ ϕ ∈ KK (C⊕ B,A) is a KK -equivalence.

We want to compute K∗(A
⊗G ⋊r G ) in terms of (a substitute of)

“(C⊕ B)⊗G ⋊r G” using Izumi’s result for finite groups!

Notice: (C⊕ B)⊗G does not exist if C⊕ B is not unital. Even if
C⊕ B is unital, ι⊕ ϕ is not a unital ∗-homomorphism, so the
previous results do not apply!

Definition For a group G and a C ∗-algebra B we define

JB :=
⊕

F∈FIN(G)

B⊗F with B∅ := C,

where FIN(G ) denotes the collection of finite subsets of G ,
equipped with G -action sending B⊗F to B⊗gF , g ∈ G .



The algebra JB

Lemma We have JB = limS∈FIN(G)(C⊕ B)⊗S .

Proof Simply observe that ∀S ∈ FIN(G ):

(C⊕ B)⊗S =
⊕
F⊆S

C⊗S∖F ⊗ B⊗F =
⊕
F⊆S

B⊗F .

The discrete G -space FIN(G ) decomposes into the G -orbits
{G · F : [F ] ∈ G\FIN(G )} and hence JB decomposes as

JB =
⊕

[F ]∈G\FIN(G)

( ⊕
[g ]∈G/GF

B⊗gF
)
=

⊕
[F ]∈G\FIN(G)

IndGGF
B⊗F

where GF = {g ∈ G : gF = F} and IndGGF
B⊗F = C0(G ×GF

B⊗F )

denotes the G -algebra induced from the GF -algebra B⊗F .



Main theorem
Main theorem (CEKN) Suppose G satisfies BCC, A is unital,
ι : C → C1A ⊆ A the unital inclusion, and ϕ ∈ KK (B,A) such that
ι⊕ ϕ ∈ KK (C⊕ B,A) is a KK -equivalence. Then

K∗(A
⊗G ⋊r G )

(1)∼= K∗(JB ⋊r G )
(2)∼=

⊕
[F ]∈G\FIN(G)

K∗(B
⊗F ⋊r GF ).

Remark For F = ∅ we get B⊗∅ ⋊r G∅ = C⋊r G = C ∗
r (G ).

If F ̸= ∅ we always have GF finite (trivial if G torsion free)! Hence

K∗(A
⊗G ⋊r G ) ∼= K∗(C

∗
r (G ))⊕

⊕
[F ]∈G\FIN+(G)

K∗(B
⊗F ⋊ GF ).

and if G is torsion free, we get

K∗(A
⊗G ⋊r G ) ∼= K∗(C

∗
r (G ))⊕

⊕
[F ]∈G\FIN+(G)

K∗(B
⊗F ).



Main theorem

Main theorem (CEKN) Suppose G satisfies BCC, A is unital,
ι : C → C1A ⊆ A the unital inclusion, and ϕ ∈ KK (B,A) such that
ι⊕ ϕ ∈ KK (C⊕ B,A) is a KK -equivalence. Then

K∗(A
⊗G ⋊r G )

(1)∼= K∗(JB ⋊r G )
(2)∼=

⊕
[F ]∈G\FIN(G)

K∗(B
⊗F ⋊r GF ).

Proof of 2nd iso: By decomposing JB over G -orbits, we get

JB ⋊r G ∼=
⊕

G\FIN(G)

(
IndGGF

B⊗F
)
⋊r G ∼Morita

⊕
G\FIN(G)

B⊗F ⋊GF ,

hence K∗(JB ⋊r G ) ∼=
⊕

[F ]∈G\FIN(G) K∗(B
⊗F ⋊ GF ).



Proof of main theorem
Proof of 1st Iso: Need to show K∗(JB ⋊r G ) ∼= K∗(A

⊗G ⋊r G ).
Using JB

∼=
⊕

G\FIN(G) Ind
G
GF

B⊗F , we get

KKG (JB ,A
⊗G ) =

∏
G\FIN(G)

KKG (IndGGF
B⊗F ,A⊗G )

∼=
∏

G\FIN(G)

KKGF (B⊗F ,A⊗G ).

Let ψF :=

[
B⊗F ↪→ (C⊕ B)⊗F (ι⊗ϕ)⊗F

−→ A⊗F

]
∈ KKGF (B⊗F ,A⊗G )

and ψ := (ψF )[F ]∈G\FIN(G) ∈ KKG (JB ,A
⊗G ).

Now let H ⊆ G be a finite subgroup. Then, for every finite
H-invariant set S ⊆ G , ψ restricts to the KKH -equivalence

ψS :
⊕
F⊆S

B⊗F ∼= (C⊕ B)⊗S ∼KK−→ A⊗S

Taking limits over S gives ψ ⋊ H : K∗(JB ⋊ H)
∼=→ K∗(A

⊗G ⋊ H).



Applications of the main theorem
Corollary Suppose that A is unital with UCT such that
ι : C → C1A ⊆ A induces a split injection ι∗ : K∗(C) → K∗(A).
Let B be any C ∗-algebra with UCT s.t. K∗(B) ∼= cokern(ι∗). Then

K∗(A
⊗G ⋊r G ) ∼= K∗(C

∗
r (G ))⊕

⊕
[F ]∈G\FIN+(G)

K∗(B
⊗F ⋊r GF ).

Proof: By the assumption ∃ϕ ∈ KK (B,A) such that
ι⊕ ϕ ∈ KK (C⊕ B,A) is a KK -equivalence.

Corollary A = Mn1(C)⊕ · · · ⊕Mnl (C) with gcd{n0, . . . , nl} = 1.
Then ι∗ : K∗(C) → K∗(A) is split injective and with B = Cl−1:

K∗(A
⊗G ⋊r G ) ∼=

⊕
[F ]∈G\FIN(G)

K∗((Cl)
⊗F ⋊ GF )

∼= K∗(C
∗
r (G ))⊕

⊕
[F ]∈G\FIN+(G)

K∗(C ({1, . . . , l}F )⋊ GF )

which easily gives the formula of Xin Li we saw before!



Wreath products
Consider a wreath product H ≀ G such that H is a-T -menable
(or, more generally, H satisfies the strong Baum-Connes
conjecture) and G satisfies BCC.

Then Jean-Luis Tu showed that C ∗
r (H) satisfies the UCT and H is

K -amenable (hence C ∗
r (H) ∼KK C ∗(H)). It follows that

C ι−→ CeH ⊆ C ∗(H)
1H−→ C

induces a split injection ι∗ : K∗(C) → K∗(C
∗(H)) ∼= K∗(C

∗
r (H)).

Thus, if B is any C ∗-algebra with UCT s.t. K∗(B) ∼= cokern(ι∗)
we get

K∗(C
∗
r (H ≀G )) = K∗(C

∗
r (H)⊗G⋊rG ) =

⊕
[F ]∈G\FIN(G)

K∗(B
⊗F⋊rGF ).

Example If H = Fn, we can choose B =
⊕n

j=1 C0(R) and the

groups K∗(B
⊗F ⋊r GF ) can be computed explicitly.



More examples

▶ Let A = C (T) ∼KK C⊕ C0(R). Then

K∗(C (T)⊗G⋊rG ) ∼= K∗(C
∗(G ))⊕

⊕
[F ]∈G\FIN+(G)

K∗(C0(R)⊗F⋊GF )

The groups K∗(C0(R)⊗F ⋊ GF ) = KGF
∗ (R|F |) have been

computed by Karoubi ’02 and/or E-Pfante ’09.

▶ Let A = Aθ (ir)rational rotation algebra. We have
Aθ ∼KK C (T2) ∼KK C⊕ B with B = C⊕ C0(R)⊕ C0(R).

K∗(A
⊗G
θ ⋊r G )

∼= K∗(C
∗
r (G ))⊕[F ]∈G\FIN+(G) K∗(C⊕ C0(R)⊕ C0(R))⊗F ⋊ GF ).

The algebras (C⊕ C0(R)⊕ C0(R))⊗F ⋊ GF decompose into
direct sums of the form C0(Rl)⋊ H for some l and H ⊆ GF ,
and are therefore all computable.



Cuntz algebras
Since O∞ ∼KK C and O2 ∼KK {0} we get

K∗(O⊗G
∞ ⋊r G ) ∼= K∗(C

∗
r (G )) and K∗(O⊗G

2 ⋊r G ) = {0}.

For general n ∈ N, one has On+1 ⊗M∞
n ∼KK {0}, hence

K∗(O⊗G
n+1 ⋊r G )

[
1

n

]
= K∗((On+1 ⊗M∞

n )⊗G ⋊r G ) = {0}.

Notice If B satsifies UCT and K∗(B) is finitely generated, then

B ∼KK

m⊕
i=1

Bi with Bi = C,C0(R),On,C0(R)⊗On.

Then (for F ̸= ∅) B⊗F ⋊ GF decomposes into direct sums of
crossed products of the form D ⋊ H, where D is a finite tensor
product of the Bi and H ⊆ GF is finite.

Open problem: Compute

K∗(O⊗Z
n ⋊ H) and K∗((C0(R)⊗On)

⊗Z ⋊ H)



Further results

We can prove a quite technical formula if A is an AF-algebra. If A
is AF and G is torsion-free, the formula reads

K∗(A
⊗G ⋊r G ) ∼= K̃∗(C

∗
r (G ))[S−1]⊕ K∗(A

⊗G )G .

where
S := {n ∈ N | [1A] ∈ K0(A) divisible by n}

and K∗(A
⊗G )G denotes the coinvariants for G ↷ K∗(A

⊗G ), the
largest quotient of K∗(A

⊗G ) with trivial G -action!

In a recent preprint, Julian Kranz and Shintaro Nishikawa extended
some of the methods presented here to the setting of the
Farrel-Jones conjectures in algebraic topology.



Some references
[1] Ola Bratteli, Erling Størmer, Akitaka Kishimoto, and Rørdam, Mikael, The

crossed product of a UHF algebra by a shift, Ergodic Theory and Dynamical
Systems 13 (1993), no. 4, 615–626, DOI 10.1017/S0143385700007574.

[2] Sayan and Echterhoff Chakraborty Siegfried and Kranz, K-theory of
noncommutative Bernoulli shifts, Math. Ann. 388 (2024), no. 3,
2671–2703, DOI 10.1007/s00208-023-02587-w.

[3] J. Kranz and S. Nishikawa, K-theory of Bernoulli shifts of finite groups on
UHF-algebras. arXiv:2210.0061 (2022).

[4] , Bernoulli shifts on additive categories and algebraic K-theory of
wreath products. arXiv:2401.14806 (2024).

[5] Xin Li, K-theory for the generalized Lamplighter groups, Proc. Amer.
Math. Soc. 147 (10) (2019), 4371–4378.

[6] S. Pooya, K-theory and K-homology of finite wreath products with free
groups, Illinois J. Math. 63 (2019), no. 2, 317–334, DOI
10.1215/00192082-7768735.

[7] R. Flores, S. Pooya, and A. Valette, K-homology and K-theory for the
lamplighter groups of finite groups, Proc. Lond. Math. Soc. (3) 115
(2017), no. 6, 1207–1226, DOI 10.1112/plms.12061.

Happy birthday, Mikael!


