Coronas and strongly self-absorbing C^* -algebras

Ilijas Farah (with Gabór Szabó)

Mikaelfest, June 20, 2024

I. Notation and definitions

 $\begin{array}{l} A,B,C\colon \operatorname{C}^*\operatorname{-algebras.}\\ B\leq A\colon B \text{ is a }\operatorname{C}^*\operatorname{-subalgebra of } A.\\ \mathcal{D}\colon \text{separable strongly self-absorbing }\operatorname{C}^*\operatorname{-algebra.}\\ \mathcal{U}\in\beta\mathbb{N}\setminus\mathbb{N}. \end{array}$

Definition

A C^* -algebra A is called

- 1. (tensorially) \mathcal{D} -absorbing if $A \otimes \mathcal{D} \cong A$.
- locally (tensorially) D-absorbing if for every separable B ≤ A there is separable C, B ≤ C ≤ A, such that C ⊗ D ≅ C.
- 3. \mathcal{D} -saturated if for every separable $C \leq A$ we have

3.1 If A is unital, \mathcal{D} embeds unitally into $A \cap C'$

3.2 If A is not unital, \mathcal{D} embeds unitally into $(A \cap C')/C^{\perp}$.

Some of my favourite things: Massive $\mathrm{C}^*\text{-}\mathsf{algebras}$

(norm) ultrapower: $A_{\mathcal{U}} = \ell_{\infty}(A)/\{(a_n) \mid \lim_{n \to \mathcal{U}} ||a_n|| = 0\}$ asymptotic sequence algebra: $A_{\infty} = \ell_{\infty}(A)/c_0(A)$ path algebra: $A_{\mathbf{P}} = C_b([0,\infty))(A)/C_0([0,\infty))(A)$ corona: $\mathcal{Q}(A) = \mathcal{M}(A)/A$.

Theorem (classical)

For every separable, separable σ -unital A, TFAE:

- 1. A is locally \mathcal{D} -absorbing.
- 2. $A_{\mathcal{U}}$ is \mathcal{D} -saturated.
- 3. A_{∞} is \mathcal{D} -saturated.
- 4. (*F.*, *Szabó*, 2022) *A*_▶ *is D-saturated*.

Proof by standard reflection arguments. Sketching a similar argument earned me a golden transparency some years ago and I am not doing it again in public.

My original motivation (for what follows)

Question (Sakai)

Assume A, B are simple, separable C^* -algebras. Does $Q(A) \cong Q(B)$ imply $A \cong B$? Some related results.

- 1. L. Brown (1977): $\mathcal{M}(A) \cong \mathcal{M}(B)$ implies $A \cong B$, for A, B separable.
- 2. S. Ghasemi (2017): There are separable type I C*-algebras A, B such that the assertion $\mathcal{Q}(A) \cong \mathcal{Q}(B)$ is independent from ZFC.
- 3. A. Vignati (2019): A positive answer to Sakai's question for stabilizations of unital $\rm C^*\mathcal{-}algebras,$ using additional set-theoretic axioms.
- 4. F. (2022): $\mathcal{Q}(\mathcal{K}) \ncong \mathcal{Q}(\mathcal{K} \otimes A)$ for any separable, unital, \mathcal{Z} -absorbing A.

The main result

Theorem (F.–Szabó, 2024)

For every σ -unital A and every D, TFAE:

- 1. A is locally tensorially D-absorbing.
- 2. $\mathcal{Q}(\mathcal{K} \otimes A)$ is locally tensorially \mathcal{D} -absorbing.
- 3. $\mathcal{Q}(\mathcal{K} \otimes A)_{\infty}$ is locally tensorially \mathcal{D} -absorbing.
- 4. $\mathcal{M}(A)$ is locally tensorially \mathcal{D} -absorbing.
- 5. $\mathcal{Q}(\mathcal{K} \otimes A)$ is \mathcal{D} -saturated.
- 6. $\mathcal{Q}(\mathcal{K} \otimes A)_{\infty}$ is \mathcal{D} -saturated.
- 7. $\mathcal{M}(A)_{\infty}$ is locally tensorially \mathcal{D} -absorbing.
- 8. $\mathcal{M}(A)_{\infty}$ is \mathcal{D} -saturated.

By classical results one can add other equivalent statements.

II. Some remarks about the proof

For unital B, C, C is called *weakly* B-saturated if there is a unital *-homomorphism from B into $C \cap A'$, for every separable $A \leq C$.

Lemma

For all unital B, C, TFAE:

- 1. C_{∞} is weakly B-saturated.
- 2. $(C_{\infty})_{\infty}$ is weakly B-saturated.
- 3. $(((C_{\infty})_{\infty})_{\infty})_{\infty}$ is weakly B-saturated.
- 4. etc. (can throw in an ultrapower as well).

Proof: C_{∞} is practically the same as $(C \otimes C(\text{Cantor set}))_{\mathcal{U}}$ (F., 2022).

Using a quotient of $\mathrm{C}^*(\mathsf{SL}_3(\mathbb{Z}))$ or such

Lemma

If A is a nonzero C*–algebra, then there are a separable $C \leq Q(\mathcal{K} \otimes A)$ and a u.c.p. map

$$\Psi \colon \mathcal{Q}(\mathcal{K} \otimes A) \to \mathcal{M}(A)_{\infty}$$

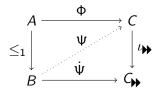
such that $\mathcal{Q}(\mathcal{K} \otimes A) \cap C'$ is included in the multiplicative domain of Ψ .

(F. 2023, following S. Wassermann: The case when $A = \mathbb{C}$.) Corollary

If A is a nonzero C^* -algebra, then for every unital separable B $(1) \Rightarrow (2) \Rightarrow (3)$.

- 1. $\mathcal{Q}(\mathcal{K}\otimes A)_{\infty}$ is weakly B-saturated.
- 2. $(\mathcal{M}(A)_{\infty})_{\infty}$ is weakly B-saturated.
- 3. $\mathcal{M}(A)_{\infty}$ is weakly *B*-saturated.

The path algebra, $G_{\mathbf{b}} = C_b([0,\infty))(C)/C_0([0,\infty))(C)$ A unital *C* has the *folding property* if for all separable unital $A \leq_1 B$, an injective unital *-homomorphism $\Phi: A \to C$ and a unital *-homomorphism $\dot{\Psi}: B \to G_{\mathbf{b}}$ such that $\iota_{\mathbf{b}} \circ \Phi = \dot{\Psi} \upharpoonright A$ there is a unital *-homomorphism $\Psi: B \to C$ such that $\Phi = \Psi \upharpoonright A$ and $\iota_{\mathbf{b}} \circ \Psi = \dot{\Psi}$.



Lemma (Manuilov-Thomsen, Phillips-Weaver, 2007)

The corona of every σ -unital C^{*}-algebra has the folding property.

Lemma

If C has the folding property, then

1. (Gabe?) Every two unital copies of \mathcal{D} in C are unitarily

Lemma

If A is σ -unital, and localy tensorially D-absorbing, then so is $\mathcal{M}(A)$.

Proof: The case when A is separable follows by Toms–Winter (preservation under extensions). Use reflection.

III. Applications

Corollary

The Calkin algebra is not elementarily equivalent to a nuclear $\mathrm{C}^*\text{-}\mathsf{algebra}.$

Proof: Every nuclear, purely infinite $\mathrm{C}^*\text{-}\mathsf{algebra}$ is $\mathcal{O}_\infty\text{-}\mathsf{stable}.$

Corollary (A very partial positive answer to Sakai's question) If A and B are separable, unital C^* -algebras and there is \mathcal{D} such that A is \mathcal{D} -absorbing and B is not, then $\mathcal{Q}(\mathcal{K} \otimes A) \ncong \mathcal{Q}(\mathcal{K} \otimes B)$.

Theorem

If A is σ -unital and locally \mathcal{D} -absorbing then so is $\mathcal{Q}(A)$. (The converse is true if A has a full projection)

(The converse is true if A has a full projection.)

The following is most interesting in case when H is the trace-kernel ideal and $\mathcal{D} = \mathcal{Z}$.

Corollary

Assume A is unital and locally D-absorbing and H is a hereditary C^* -subalgebra of A_U . Then H is an inductive limit of separable $E \leq H$ such that Q(E) is D-absorbing.

Corollary

If A is σ -unital and locally tensorially D-absorbing then $\mathcal{M}(A)$ has strict comparison.

Proof: \mathcal{Z} -stability implies strict comparison.

Corollary

The Calkin algebra is not isomorphic to the corona of a \mathcal{Z} -stable C^* -algebra.

(Conjecturally, it is not isomorphic to the corona of a separable simple $\mathrm{C}^*\text{-}\mathsf{algebra}$ other than $\mathcal{K};$ true assuming forcing axioms (Vignati).) For additional implications, ask Hannes.

Tillykke med fødselsdagen, Mikael! Happy Birthday, Mikael!