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Abstract. It is well-known that every C*-algebra is determined by its linear
and multiplicative structure: Two C*-algebras are *-isomorphic if and only if

they admit a multiplicative, linear bijection.

We study if instead of the whole multiplicative structure it suffices to record
when two elements have zero product. While it is not clear if every C*-algebra

is determined this way, we obtain many positive results. In particular, two
unital, simple C*-algebras are *-isomorphic if and only if they admit a linear

bijection that preserves zero products.

These are notes for a talk on 14. March 2022 at the conference ‘Noncom-
mutativity in the north’ in Gothenburg. It is about joint work with Eusebio

Gardella to appear in forthcoming work [GT22].

One says that two C*-algebras A and B are *-isomorphic, denoted A ∼= B, if
there exists a *-isomorphism A → B, that is, a bijective, linear, multiplicative,
*-preserving map A→ B.

Question 1. How can we deduce such a *-isomorphism?

• From the *-linear structure? No: The map

M2(C)→ C4,

(
a b
c d

)
7→ (a, b+ c, i(b− c), d).

is bijective, linear and *-preserving, but M2(C) � C4.

• From the *-ring structure? No: Given a C*-algebra A, consider the opposite
C*-algebra Aop. Then the map

A→ Aop, a 7→ a∗,

is bijective, multiplicative and *-preserving, but there exist examples ([Phi01]) such
that A � Aop.

• From the algebra structure? Yes:

Theorem 2 (Gardner 1965, [Gar65]). Let ϕ : A → B be an isomorphism between
C∗-algebras, that is, ϕ is bijective, linear and multiplicative. Then ϕ = α ◦ π for
some *-isomorphism π : A→ B and some ‘weakly inner’ automorphism α : B → B,
given by α(b) = cbc−1, for some invertible operator c ∈ B∗∗. In particular, ϕ is
automatically continuous.

Can the result of Gardner be strengthened? Does it suffice if instead of the whole
multiplicative structure we record when two elements are orthogonal in the sense
that they have zero-product? We formalize this:

Definition 3. A map ϕ : A → B between C∗-algebras is said to preserve zero-
products if xy = 0 implies ϕ(x)ϕ(y) = 0, for all x, y ∈ A.
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Question 4. Let ϕ : A → B be a bijective, linear map between C∗-algebras such
that ϕ and ϕ−1 preserve zero-products. (That is, we have xy = 0 if and only if
ϕ(x)ϕ(y) = 0, for all x, y ∈ A.)

Do we obtain A ∼= B? What can we say about the structure of ϕ? In particular,
is ϕ automatically continuous?

Theorem 5 (Alaminos-Bresar-Extremera-Villena 2009, [ABEV09]). Let ϕ : A→ B
be a bounded, bijective, linear, zero-product preserving map between C∗-algebras.
Then ϕ is a weighted isomorphism, that is, there exists a central, invertible multi-
plier h ∈ Z(M(B))−1 and an isomorphism ψ : A → B such that ϕ(a) = hψ(a) for
all a ∈ A. In particular, A ∼= B.

Theorem 5 shows that Question 4 is really a question about automatic continuity.
Results showing automatic continuity are difficult and highly nontrivial.

Example 6 (Jarosz 1990, [Jar90]). Let X and Y be compact, Hausdorff spaces, and
let ϕ : C(X) → C(Y ) be a bijective, linear map preserving zero-products. Then ϕ
is automatically continuous, and consequently C(X) ∼= C(Y ), and thus X and Y
are homeomorphic.

Proposition 7. Let ϕ : A → B be a bijective, linear map between C∗-algebras.
Then the following are equivalent:

(1) ϕ is a weighted isomorphism;
(2) ϕ(ab)ϕ(c) = ϕ(a)ϕ(bc) for all a, b, c ∈ A.

Proof. The implication ‘(1)⇒(2)’ is clear. The idea for the implication ‘(2)⇒(1)’
is to define α : B → B by α(ϕ(x)ϕ(y)) = ϕ(xy) for x, y ∈ A. One shows that α
is a well-defined, central, invertible multiplier on B and that α ◦ ϕ : A → B is an
isomorphism. �

Our approach to Question 4 is to verify the formula in Proposition 7(2). For
the purpose of this talk, we use the following definition. (The actual definition is
slightly different.)

Definition 8 (Gardella-T). A C∗-algebra A is said to be zero-product balanced if

ab⊗ c− a⊗ bc ∈ span{u⊗ v ∈ A⊗A : uv = 0
}
,

for all a, b, c ∈ A, where A⊗A denotes the algebraic tensor product.

The next result shows that the formula in Proposition 7(2) holds for all (not
necessarily bijective) zero-product preserving maps if the domain is zero-product
balanced.

Lemma 9. Let ϕ : A → B be a linear, zero-product preserving map between C∗-
algebras. Assume that A is zero-product balanced. Then ϕ(ab)ϕ(c) = ϕ(a)ϕ(bc) for
all a, b, c ∈ A.

The next result is an immediate consequence of Proposition 7 and Lemma 9:

Theorem 10. Let ϕ : A → B be a bijective, linear, zero-product preserving map
between C∗-algebras. Assume that A is zero-product balanced. Then ϕ is a weighted
isomorphism and A ∼= B.

Example 11. If X is a compact, Hausdorff space with infinitely many points, then
C(X) is not zero-product determined: there exists a (discontinuous) linear map
ϕ : C(X)→ C that preserves zero-products, but such that ϕ(a)ϕ(1) 6= ϕ(1)ϕ(a) for
some a ∈ C(X). (This is based on Proposition 2.12 in [Bre16].)

This should be compared with a result of Dales from 1979, [Dal79], which shows
that for X a compact, Hausdorff space with infinitely many points, there exists
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(assuming the continuum hypothesis) a discontinuous homomorphism from C(X)
to a Banach algebra.

Proposition 12. Assume that a C∗-algebra A is generated (as an algebra) by its
idempotents. Then A is zero-product determined.

Proof. For simplicity, we only verify the conclusion of Lemma 9. Let ϕ : A→ B be
a linear, zero-product preserving map to another C∗-algebra. Let a, c ∈ A and let
e ∈ A be an idempotent. Then [ae][(1−e)c] = 0, and therefore ϕ(ae)ϕ((1−e)c) = 0.
Adding ϕ(ae)ϕ(ec), we obtain

ϕ(ae)ϕ(c) = ϕ(ae)ϕ(ec).

An analogous argument shows that ϕ(ae)ϕ(ec) = ϕ(a)ϕ(ec), and thus

ϕ(ae)ϕ(c) = ϕ(ae)ϕ(ec) = ϕ(a)ϕ(ec).

If e1 and e2 are idempotents, then

ϕ(ae1e2)ϕ(c) = ϕ(ae1)ϕ(e2c) = ϕ(a)ϕ(e1e2c).

Inductively, we get ϕ(ae1e2 · · · en)ϕ(c) = ϕ(a)ϕ(e1e2 · · · enc) for every idempotents
e1, . . . , en. Using linearity and the assumption that A is generated by its idempo-
tents, we deduce that ϕ(ab)ϕ(c) = ϕ(a)ϕ(bc) for all a, b, c ∈ A. �

Example 13. Let A be a unital C∗-algebra, and let n ≥ 2. Then Mn(A) is generated
by idempotents and hence is zero-product balanced. (See, for example, Proposi-
tion 2.18 in [Bre16].)

Thus, for any other C∗-algebra B we have Mn(A) ∼= B if and only if there exists
a bijective, linear, zero-product preserving map Mn(A)→ B.

Theorem 14 (Gardella-T). Let A be a unital C∗-algebra without one-dimensional
irreducible representations. Then A is zero-product balanced.

Corollary 15. Let A be a unital C∗-algebra without one-dimensional irreducible
representations. Then, for any other C∗-algebra B we have A ∼= B if and only if
there exists a bijective, linear, zero-product preserving map A→ B.

Remarks 16. (1) Theorem 14 applies in particular to every unital, simple C∗-
algebra. There are important examples (like the Jiang-Su algebra Z) of such C∗-
algebras that contain no idempotents different from 0 and 1.

(2) The idea to our proof of Theorem 14 is to show that A is generated by
‘special’ square-zero elements that can be ‘transferred’ like idempotents in the proof
of Proposition 12.

(3) Theorem 14 also applies to non-unital C∗-algebras assuming that M(A) has
no one-dimensional irreducible representations. This raises the next question.

Question 17. Let A be a non-unital C∗-algebra. When does M(A) have no one-
dimensional irreducible representations?

A necessary condition for a positive answer to Question 17 is that A itself has
no one-dimensional irreducible representations. But this condition is not suffi-
cient: Robert-Rørdam, [RR13], show that there exists a separable (non-simple)
C∗-algebra A that has no one-dimensional irreducible representations (not even
any finite-dimensional irreducible representations), but such that M(A) has a one-
dimensional irreducible representation.

Based on results of Sakai and Pedersen, on can show that there exists a simple
(non-separable) C∗-algebra A such that M(A)/A ∼= C; see Example 4.15 in [TV21].

Does there exist a (non-unital) simple and separable C∗-algebra A such that
M(A) has a one-dimensional irreducible representation?
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