Rigidity results for *L^p*-operator algebras

Hannes Thiel

TU Dresden, Germany

(joint work with Yemon Choi, Eusebio Gardella)

18. August 2021 IWOTA, Session 16: Operator Ideals and Operators on Banach spaces

L^p-operator algebras

Let $p \in [1,\infty)$.

Definition

An L^p -operator algebra is a Banach algebra that admits an isometric representation on some L^p -space.

Examples

- closed subalgebras of $\mathcal{B}(\ell^p)$ and $\mathcal{B}(L^p)$
- $\blacksquare C(X) = \{f \colon X \to \mathbb{C} \mid f \text{ continuous}\} \subseteq \mathcal{B}(L^p(X, \mu))$
- Herz 1973: reduced group L^p -operator algebra $F^p_{\lambda}(G) = \overline{\operatorname{span}}\{\lambda_g \mid g \in G\} \subseteq \mathcal{B}(\ell^p(G))$
- Phillips 2012: reduced L^p -operator crossed product $F^p_{\lambda}(G, X) = \overline{\operatorname{span}}\{f\lambda_g \mid f \in C(X), g \in G\} \subseteq \mathcal{B}(\ell^p(G, L^p(\mu)))$ for dynamical system $G \curvearrowright X$

Phillips 2012: L^p -Cuntz algebra $\mathcal{O}_2^p \subseteq \mathcal{B}(\ell^p)$

Theorem (Gardella-T 2018)

Let G and H be discrete groups, and $p \in [1, \infty) \setminus \{2\}$. Then:

$$F^p_{\lambda}(G) \cong F^p_{\lambda}(H) \quad \Leftrightarrow \quad G \cong H.$$

Fails for p = 2: $C^*_{\lambda}(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong C^*_{\lambda}(\mathbb{Z}_4)$.

Theorem (Choi-Gardella-T 2019)

Let $G \curvearrowright X$ and $H \curvearrowright Y$ be topologically free actions of discrete groups on compact Hausdorff spaces, and $p \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G, X) \cong F_{\lambda}^{p}(H, Y)$ if and only if $G \curvearrowright X$ and $H \curvearrowright Y$ are continuously orbit equivalent.

Also fails for p = 2: Let $F \curvearrowright C$ be a topologically free action with $C^*_{\lambda}(F,C) \cong \mathcal{O}_2$. Then for any minimal, topologically free action $G \curvearrowright X$, we have $C^*_{\lambda}(F \times G, C \times X) \cong \mathcal{O}_2$.

Theorem (CGT 2019)

Let *A* be a unital L^p -operator algebra. Then there exists a largest C*-subalgebra of *A*. (Call it the **C*-core** of *A*, denoted by core(*A*).) If $p \neq 2$, then core(*A*) is commutative.

Idea for $p \neq 2$: Let $A \subseteq \mathcal{B}(L^p(\mu))$. Let A_h denote the hermitian elements. Then $A_h = A \cap \mathcal{B}(L^p(\mu))_h = A \cap L^{\infty}_{\mathbb{R}}(\mu)$ is closed under multiplication. Hence, $\operatorname{core}(A) = A_h + iA_h$ is commutative C*-algebra.

Examples

• $\operatorname{core}(F_{\lambda}^{p}(G)) = \mathbb{C}$ • $\operatorname{core}(F_{\lambda}^{p}(G, X)) = C(X)$ • $\operatorname{core}(\mathcal{O}_{2}^{p}) = C(\text{Cantor space})$

The Weyl groupoid

Let *A* be a unital L^p -operator algebra with \mathbb{C}^* -core $C(X) \subseteq A$. We say that a partial homeomorphism $\alpha \colon U \to V$ (for open subsets $U, V \subseteq X$) is **realizable** if there exist $a, b \in A$ such that:

1 for
$$f \in C(X)_+$$
, we have $afb, bfa \in C(X)_+$;

2
$$U = \{x \in X \mid ba(x) > 0\}$$
 and $V = \{x \in X \mid ab(x) > 0\};$

- 3 we have $f(\alpha(x))ba(x) = (bfa)(x)$ for $f \in C_0(V)$ and $x \in U$;
- 4 we have $g(\alpha^{-1}(y))ab(y) = (agb)(y)$ for $g \in C_0(U)$ and $y \in V$.

Definition (CGT 2019)

The **Weyl groupoid** of *A* is the groupoid \mathcal{G}_A of germs associated to the inverse semigroup of realizable partial homeomorphisms on *X*.

Theorem (CGT 2019)

Let $G \curvearrowright X$ be topologically free. Then the Weyl groupoid of $F_{\lambda}^{p}(G, X)$ is isomorphic to the transformation groupoid $G \ltimes X$.

Theorem (CGT 2019)

Let $G \curvearrowright X$ and $H \curvearrowright Y$ be topologically free actions of discrete groups on compact Hausdorff spaces, and $p \in [1, \infty) \setminus \{2\}$. Then TFAE:

1
$$F^p_{\lambda}(G, X) \cong F^p_{\lambda}(H, Y);$$

2 $G \ltimes X \cong H \ltimes Y$;

3 $G \curvearrowright X$ and $H \curvearrowright Y$ are continuously orbit equivalent.

(1) \Rightarrow (2): If $F_{\lambda}^{p}(G, X) \cong F_{\lambda}^{p}(H, Y)$, then the Weyl groupoids of $F_{\lambda}^{p}(G, X)$ and $F_{\lambda}^{p}(H, Y)$ are isomorphic, hence $G \ltimes X \cong H \ltimes Y$. (1) \Leftarrow (2): Surprisingly difficult. (2) \Leftrightarrow (3) well-known Leavitt algebra = universal \mathbb{C} -algebra:

 $L_2 = \langle s_1, s_2, t_1, t_2 \mid t_1 s_1 = t_2 s_2 = s_1 t_1 + s_2 t_2 = 1, \ t_1 s_2 = t_2 s_1 = 0 \rangle.$

Cuntz algebra \mathcal{O}_2 is the completion of L_2 for representations $\pi: L_2 \to \mathcal{B}(H)$ such that $\pi(s_j) = \pi(t_j)^*$.

Phillips: For $p \in [1, \infty)$, the L^p -Cuntz algebra \mathcal{O}_2^p is the completion of L_2 for 'spatial' representations $\pi : L_2 \to \mathcal{B}(L^p(\mu))$.

Elliott's theorem: $\mathcal{O}_2 \otimes \mathcal{O}_2 \cong \mathcal{O}_2$.

Question (Phillips): $\mathcal{O}_2^p \otimes_p \mathcal{O}_2^p \cong \mathcal{O}_2^p$ for $p \neq 2$?

Application to L^p -Cuntz algebras (2)

Theorem (CGT 2019)

If $p \neq 2$, then $\mathcal{O}_2^p \otimes_p \mathcal{O}_2^p \ncong \mathcal{O}_2^p$.

Idea:

- There exists an amenable, topologically free action of
 - $G := \mathbb{Z}_2 * \mathbb{Z}_3$ on the Cantor space *X* such that $\mathcal{O}_2^p \cong F_{\lambda}^p(G, X)$.
- Then $\mathcal{O}_2^p \otimes_p \mathcal{O}_2^p \cong F_\lambda^p(G \times G, X \times X).$
- Medynets-Sauer-Thom 2017: Two groups are bi-Lipschitz equivalent iff they admit continuously orbit equivalent actions on compact Hausdorff spaces.

Assuming
$$\mathcal{O}_2^p \otimes_p \mathcal{O}_2^p \cong \mathcal{O}_2^p$$
, we get
 $F_{\lambda}^p(G \times G, X \times X) \cong F_{\lambda}^p(G, X)$.

Then $G \times G \curvearrowright X \times X$ and $G \curvearrowright X$ are continuously orbit equivalent. Hence, $(\mathbb{Z}_2 * \mathbb{Z}_3) \times (\mathbb{Z}_2 * \mathbb{Z}_3)$ and $\mathbb{Z}_2 * \mathbb{Z}_3$ are bi-Lipschitz equivalent, a contradiction.

Thank you!

- Choi, Gardella, Thiel. Rigidity results for L^p-operator algebras and applications, Preprint arXiv:1909.03612 (2019).
- (2) Gardella, Thiel. Isomorphisms of algebras of Convolution Operators. **Ann. Sci. École Norm. Sup.** (to appear).
- (3) Medynets, Sauer, Thom. Cantor systems and quasi-isometry of groups, Bull. Lond. Math. Soc. 49 (2017), 709-724.
- (4) Phillips. Analogs of Cuntz algebras on L^p-spaces, Preprint arXiv:1201.4196 (2012).
- (5) Phillips. Crossed products of L^p-operator algebras and the *K*-theory of Cuntz algebras on L^p-spaces, Preprint arXiv:1309.6406 (2013).