A gentle introduction to Cuntz semigroups Part 1

Hannes Thiel

Chalmers University of Technology and University of Gothenburg

13. March 2023 Noncommutative Geometry in NYC (online seminar)

Comparison of projections (Murray-von Neumann) I

Throughout A is a C^* -algebra.

Definition 1

Murray-von Neumann (sub)equivalence of projections in A:

$$egin{array}{lll} p\sim_{\mathrm{MvN}} q & :\Leftrightarrow & p=vv^*, q=v^*v, \;\; \textit{some }v\in \mathcal{A}. \ p\precsim_{\mathrm{MvN}} q & :\Leftrightarrow & p\sim_{\mathrm{MvN}} p'\leq q, \;\; \textit{some }p'. \end{array}$$

Murray-von Neumann semigroup:

 $V(\mathcal{A}):=\operatorname{Proj}(\mathcal{A}\otimes\mathbb{K})_{/\sim_{\mathit{MVN}}},\quad [\mathcal{p}]+[\mathcal{q}]:=[\mathcal{p}\oplus\mathcal{q}].$

- K denotes compact operators on l²(N), and A ⊗ K is the stabilization of A, the completion of U_n M_n(A).
- Idea: Equivalent projections have the same 'size' relative to A. V(A) encodes 'sizes' of projections.
- If A is unital, then $K_0(A)$ = Grothendieck group of V(A).

Comparison of projections (Murray-von Neumann) II

$$egin{aligned} & p \sim_{ ext{MvN}} q & :\Leftrightarrow & p = vv^*, q = v^*v, ext{ some } v \in A. \ & V(A) := ext{Proj}(A \otimes \mathbb{K})_{/\sim_{ ext{MvN}}}, \quad & [p] + [q] := [p \oplus q]. \end{aligned}$$

Example 2 (\mathbb{C})

Consider projection p in $\mathbb{C} \otimes \mathbb{K} = \mathbb{K} = \mathbb{K}(H)$. The **rank** of p is

$$\mathsf{rk}(p) := \dim_{\mathbb{C}} p(H) \in \{0, 1, 2, \ldots\} =: \mathbb{N}.$$

For $p, q \in Proj(\mathbb{K})$, have

$$p \sim_{\mathrm{MvN}} q \quad \Leftrightarrow \quad \mathrm{rk}(p) = \mathrm{rk}(q)$$

 $p \preceq_{\mathrm{MvN}} q \quad \Leftrightarrow \quad \mathrm{rk}(p) \leq \mathrm{rk}(q).$

Moreover, for every $n \in \mathbb{N}$ there is a projection of rank *n*. Thus

 $V(\mathbb{C}) = \operatorname{Proj}(\mathbb{K})_{/\sim_{MNN}} \cong \mathbb{N}, \text{ and } K_0(\mathbb{C}) = \operatorname{Gr}(\mathbb{N}) \cong \mathbb{Z}.$

Comparison of projections (Murray-von Neumann) III

$$egin{array}{ll} p\sim_{\mathrm{MvN}} q & :\Leftrightarrow & m{p} = vv^*, q = v^*v, \ ext{some } v \in A. \ V(A) := \mathrm{Proj}(A \otimes \mathbb{K})_{/\sim_{\mathcal{MVN}}}, \quad [m{p}] + [m{q}] := [m{p} \oplus m{q}]. \end{array}$$

Example 3 (\mathbb{B})

 \mathbb{B} denotes bounded opertors on $H = \ell^2(\mathbb{N})$. For $p \in \operatorname{Proj}(\mathbb{B})$:

$$\mathsf{rk}(p) := \dim_{\mathbb{C}} p(H) \in \{0, 1, 2, \dots, \infty\} =: \overline{\mathbb{N}}$$

Have $p \in \mathbb{K}$ iff $\mathsf{rk}(p) < \infty$, and $p \sim_{MvN} 1$ iff $\mathsf{rk}(p) = \infty$. Similarly, projections in $\mathbb{B} \otimes \mathbb{K}$ with infinite rank are MvN equivalent. Thus

$$V(\mathbb{B}) \cong \overline{\mathbb{N}} = \{0, 1, 2, \dots, \infty\}.$$

For all $x, y \in \overline{\mathbb{N}}$, have $x + \infty = \infty = y + \infty$, and so

$$K_0(\mathbb{B}) = \operatorname{Gr}(\overline{\mathbb{N}}) = 0.$$

Comparison of projections (Murray-von Neumann) IV

Example 4 (II₁-factor)

Let *N* be a II₁-factor, with its unique tracial state τ . For $p, q \in Proj(N)$, Murray-von Neumann showed:

$$oldsymbol{
ho}\sim_{\mathrm{MvN}}oldsymbol{q}$$
 : \Leftrightarrow $au(oldsymbol{
ho}) = au(oldsymbol{q}),$
 $oldsymbol{
ho} \precsim_{\mathrm{MvN}}oldsymbol{q}$: \Leftrightarrow $au(oldsymbol{
ho}) \leq au(oldsymbol{q}).$

Moreover, for every $t \in [0, 1]$, there is p with $\tau(p) = t$. Thus $Proj(N)_{/\sim_{MVN}} \cong [0, 1].$

The same holds in each $M_n(N)$, and we get

$$\operatorname{Proj}(M_n(N))_{/\sim_{MvN}} \cong [0, n].$$

and finally

 $V(N)\cong [0,\infty), \text{ and } K_0(N)=\mathrm{Gr}([0,\infty))=\mathbb{R}.$

Comparison of projections: Applications

- Type classification of von Neumann algebras
- Classification of AF-algebras: $A \cong B$ iff $V(A) \cong V(B)$.
- Classification of finitely-generated, projective modules: Given p ∈ Proj(M_n(A)), the module E_p := p(A^{⊕n}) is f.g. projective. Every f.g. projective module arises this way, and E_p ≅ E_q iff p ∼_{MvN} q. Thus:

$$V(A) := \operatorname{Proj}(A \otimes \mathbb{K})_{/\sim_{MVN}} \cong \{ \text{f.g. projective } A \text{-modules} \}_{/\cong}.$$

Example 5 ($C^*_{red}(\mathbb{F}_n)$)

Reduced group C^* -algebra $C^*_{red}(\mathbb{F}_n)$ of free group.

Pimsner-Voiculescu 1982: $K_0(C^*_{red}(\mathbb{F}_n)) \cong \mathbb{Z}$ Dykema-Haagerup-Rørdam 1997: $V(C^*_{red}(\mathbb{F}_n)) \cong \mathbb{N}$

Consequence: Every f.g. projective $C^*_{red}(\mathbb{F}_n)$ -module is free.

Comparison of positive elements (Cuntz) I

- Problem: Many interesting C*-algebras contain only few (if any) projections.
- Kadison-Kaplansky conjecture: If G is torsion-free, then Proj(C^{*}_{red}(G)) = {0,1}.
- Cuntz: Study comparision of positive elements.

 $\begin{array}{ll} \mbox{Recall: } p\precsim_{MvN} q :\Leftrightarrow p = vv^*, v^*v \leq q, \ \ \mbox{some } v \in A. \\ \mbox{First attempt: For } a, b \in A_+: \end{array}$

$$a \precsim b \quad :\Leftrightarrow \quad a = vv^*, v^*v \in \overline{bAb}, \text{ some } v \in A.$$

(Essentially $p_a \preceq_{MvN} p_b$ in A^{**} for support projections p_a, p_b .) Much better behaved:

$$a \preceq_{Cu} b \quad :\Leftrightarrow \quad \forall \ \varepsilon > 0 : (a - \varepsilon)_+ = vv^*, v^*v \in \overline{bAb}, \text{ some } v.$$

 $\Leftrightarrow \quad a = \lim_n w_n bw_n^*, \text{ some } (w_n)_n.$

(a − ε)₊ is the ε-cut-down of a, given by functional calculus with f(t) = max{0, t − ε}.

Comparison of positive elements (Cuntz) II

Definition 6 (Cuntz 1978, Coward-Elliott-Ivanescu 2008)

Cuntz (sub)equivalence of positive elements in A:

$$\begin{array}{rcl} a \precsim_{\mathrm{Cu}} b & :\Leftrightarrow & \forall \, \varepsilon > 0 : (a - \varepsilon)_+ = vv^*, v^*v \in \overline{bAb}, \ \text{ some } v. \\ & \Leftrightarrow & a = \lim_n w_n b w_n^*, \ \text{ some } (w_n)_n. \\ a \sim_{\mathrm{Cu}} b & :\Leftrightarrow & a \precsim_{\mathrm{Cu}} b \precsim_{\mathrm{Cu}} a. \end{array}$$

Cuntz semigroup:

$$Cu(A) := (A \otimes \mathbb{K})_{+/\sim_{Cu}},$$

equipped with addition and partial order:

 $[a] + [b] := [a \oplus b], \quad [a] \leq [b] :\Leftrightarrow a \precsim_{Cu} b.$

Comparison of positive elements (Cuntz) III

Example 7 (\mathbb{C})

Positive element *a* in $\mathbb{C} \otimes \mathbb{K} = \mathbb{K}$ is diagonalizable:

$$a = \sum_{n=1}^{\infty} \lambda_n e_n$$

with rank-one projections e_n , and decreasing sequence $\lambda_n \to 0$. Case 1: If sp(a) finite, then $a \sim_{Cu} p$ for finite-rank projection p. Case 2: If sp(a) is infinite, then $(a - \varepsilon)_+ \sim_{Cu} p$ for finite-rank projection p, with rank $\to \infty$ as $\varepsilon \to 0$. It follows that all positive elements with infinite spectrum are Cuntz equivalent. Thus:

$$Cu(\mathbb{C}) = \mathbb{K}_{+/\sim_{Cu}} \cong \overline{\mathbb{N}}.$$

Examples:

A	V(A)	Cu(A)
\mathbb{C}	\mathbb{N}	$\overline{\mathbb{N}}:=\mathbb{N}\cup\{\infty\}$
<i>C</i> ([0, 1])	\mathbb{N}	$Lsc([0,1],\overline{\mathbb{N}})$
II_1 -factor	$[0,\infty)$	$[0,\infty)\sqcup(0,\infty]$
$\textit{\textit{C}}^*_{\mathrm{red}}(\mathbb{F}_\infty)$	N	$\mathbb{N} \sqcup (0,\infty]$
M₂∞	ℕ[<u>1</u>]	$\mathbb{N}[rac{1}{2}] \sqcup (0,\infty]$

- Cu(A) encodes more information than V(A) for example, Cu(A) always encodes the ideal lattice and tracial simplex
- Cu(A) is more difficult to compute than V(A) for example,
 V(·) is homotopy invariant, while Cu(·) is not

Murray-von Neumann vs Cuntz semigroup II

- V(·) classifies finitely-generated, projective modules.
 V(A) ≅ {f.g. projective A-modules}_{/≅}.
- If A has stable rank one (A⁻¹ ⊆ A is norm-dense), then Cu(A) classifies countably-generated Hilbert modules.

 $Cu(A) \cong \{c.g. \text{ Hilbert } A \text{-modules}\}_{/\cong}.$

Example 8 ($C^*_{red}(\mathbb{F}_{\infty})$)

Dykema-Haagerup-Rørdam 1997: $C^*_{red}(\mathbb{F}_{\infty})$ stable rank one Dykema-Rørdam '00, Robert '12: $Cu(C^*_{red}(\mathbb{F}_{\infty})) \cong \mathbb{N} \sqcup (0, \infty]$. Consequence: We know all c.g. Hilbert $C^*_{red}(\mathbb{F}_{\infty})$ -modules.

Question 9

Is
$$Cu(C^*_{red}(\mathbb{F}_n)) \cong \mathbb{N} \sqcup (0,\infty]$$
 for $n \in \{2,3,\ldots\}$?

Classification of morphisms (1)

B has **stable rank one** if $B^{-1} \subseteq B$ is dense.

Proposition

Let A be AF-algebra, B stable rank one. Then:

(\exists) Every $V(A) \rightarrow V(B)$ is induced by $A \rightarrow B$.

(!) $\varphi, \psi \colon A \to B$ approx. unitarily equivalent iff $V(\varphi) = V(\psi)$.

Robert's class = inductive limits of one-dimensional noncommutative CW-complexes with trivial K_1 -groups. Examples: Interval algebra $C([0, 1], M_n)$, dimension-drop algebra { $f \in C([0, 1], M_p \otimes M_q) : f(0) \in M_p \otimes 1, f(1) \in 1 \otimes M_q$ }.

Theorem (Robert 2012)

Let A in Robert's class, B stable rank one. Then:

(\exists) Every $Cu(A) \rightarrow Cu(B)$ is induced by $A \rightarrow B$.

(!) $\varphi, \psi \colon A \to B$ approx. unitarily equivalent iff $Cu(\varphi) = Cu(\psi)$.

Classification of morphisms (2)

■ If *A* in Robert's class, *B* stable rank one, then morphisms $A \rightarrow B$ (up to a.u.) correspond to $Cu(A) \rightarrow Cu(B)$.

Applications:

- Classification of Robert's class: $A \cong B$ iff $Cu(A) \cong Cu(B)$.
- Construction of the Jiang-Su algebra Z as the (unique) algebra in Robert's class with Cu(Z) ≅ N ∪ (0,∞]. (Z is unital, separable, simple, nuclear, projectionless, unique trace; the C*-analog of the hyperfinite II₁-factor)
- Embedding results: $Z \subseteq C^*_{red}(\mathbb{F}_{\infty})$ (using $Cu(Z) \cong Cu(C^*_{red}(\mathbb{F}_{\infty}))$ and $sr(C^*_{red}(\mathbb{F}_{\infty})) = 1$)
- $\, \sim \, C^*_{red}(\mathbb{F}_\infty) \otimes C^*_{red}(\mathbb{F}_\infty)$ is singly generated (T-Winter 2014)

Question 10

Does \mathcal{Z} embed into every simple C^* -algebra with stable rank one?

Thank you!

References (1)

- 1 Antoine, Perera, Thiel. Tensor products and regularity properties of Cuntz semigroups. **Mem. Amer. Math. Soc.** 251 (2018), no. 1199.
- Coward, Elliott, Ivanescu. The Cuntz semigroup as an invariant for C*-algebras. J. Reine Angew. Math. 623 (2008).
- Cuntz. Dimension functions on simple C*-algebras. Math.
 Ann. 233 (1978)
- 4 Dykema, Haagerup, Rørdam. The stable rank of some free product C*-algebras. Duke Math. J. 90 (1997).
- 5 Gardella, Perera. The modern theory of Cuntz semigroups of C*-algebras. arxiv:2212.02290, 2022.
- Robert. Classification of inductive limits of 1-dimensional NCCW complexes. Adv. Math. 231 (2012).
- Thiel, Winter. The generator problem for Z-stable C-algebras Trans. Amer. Math. Soc. 366 (2014).

- Let *X* locally compact, Hausdorff, and $f, g \in C_0(X)_+$. Then $f \preccurlyeq_{Cu} g$ iff supp $(f) \subseteq$ supp(g).
- $f(a) \preceq_{Cu} a$ for every continuous $f : \mathbb{R}_+ \to \mathbb{R}_+$ with f(0) = 0.
- $f(a) \sim_{Cu} a$ for every continuous $f: \mathbb{R}_+ \to \mathbb{R}_+$ with f(0) = 0and f(t) > 0 for t > 0.
- $a \sim_{Cu} a^t$ and $a \sim_{Cu} ta$ for every t > 0.

•
$$xx^* \sim_{Cu} x^*x$$
 for every $x \in A$.

If $a \leq b$, then $a \preceq_{Cu} b$.