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Comparison of projections (Murray-von Neumann) |
Throughout A is a C*-algebra.

Definition 1

Murray-von Neumann (sub)equivalence of projections in A:

p~wwN QG & p=wrqg=Vv'v, somev e A.
P3N g = p~wmnp <q, somep.

Murray-von Neumann semigroup:

V(A) := Proj(A® K) /vy [Pl + 0] := [P ql-

m K denotes compact operators on /2(N), and A® K is the
stabilization of A, the completion of | J,, Ma(A).

m |dea: Equivalent projections have the same ‘size’ relative
to A. V(A) encodes ‘sizes’ of projections.

m If Ais unital, then Ky(A) = Grothendieck group of V(A).
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Comparison of projections (Murray-von Neumann) Il

pP~wvwN G & p=w'qg=Vv'v, someveA
V(A) :=Proj(A® K) /vy [Pl +[q] =[P @ q].

Example 2 (C)
Consider projection pin C ® K = K = K(H). The rank of p is

rk(p) :=dim¢ p(H) € {0,1,2,...} = N.
For p, g € Proj(K), have

p~wnNg < rk(p)=rk(q)
P3N g < rk(p) < rk(q).

Moreover, for every n € N there is a projection of rank n. Thus

V(C) = Proj(K),... . =N, and Ky(C) = Gr(N) = Z.

/~MuN
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Comparison of projections (Murray-von Neumann) ll|

pP~wvwN G & p=w'qg=Vv'v, someveA
V(A) :=Proj(A® K) /vy [Pl +[q] =[P @ q].

Example 3 (B)

B denotes bounded opertors on H = ¢?(N). For p € Proj(B):
rk(p) := dimc p(H) € {0,1,2,...,00} =: N.

Have p € Kiiff rk(p) < oo, and p ~yyn 1 iff rk(p) = oo. Similarly,
projections in B ® K with infinite rank are MvN equivalent. Thus

V(B) =N ={0,1,2,...,00}.
For all x,y € N, have x + co = 0o = y + o0, and so

Ko(B) = Gr(N) = 0.
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Comparison of projections (Murray-von Neumann) 1V

Example 4 (II;-factor)

Let N be a II;-factor, with its unique tracial state 7. For
p, g € Proj(N), Murray-von Neumann showed:

p~wnNg = 7(p)=7(9),
pImw g = 7(p) < 7(q)
Moreover, for every t € [0, 1], there is p with 7(p) = t. Thus
Proj(N)/NMvN =~ [0,1].
The same holds in each M,(N), and we get
Proj(Mn(N)) /i = [0, 1.
and finally
V(N) =[0,00), and Ky(N)= Gr([0,0)) =R.

5/16



Comparison of projections: Applications

m Type classification of von Neumann algebras

m Classification of AF-algebras: A = Biff V(A) = V(B).

m Classification of finitely-generated, projective modules:
Given p € Proj(My(A)), the module E, := p(A®") is f.g.
projective. Every f.g. projective module arises this way,
and Ep = E4 iff p ~vyn g- Thus:

V(A) := Proj(A® K) = {f.g. projective A-modules} .

/”“MVN

Example 5 (C;.(Fp))

Reduced group C*-algebra C;,,(IFp) of free group.

Pimsner-Voiculescu 1982: Ko(Cry(Fn)) = Z
Dykema-Haagerup-Rerdam 1997: V(C  (Fp)) =N

Consequence: Every f.g. projective C;,,(IFn)-module is free.
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Comparison of positive elements (Cuntz) |

m Problem: Many interesting C*-algebras contain only few (if
any) projections.
m Kadison-Kaplansky conjecture:
If G is torsion-free, then Proj(C:,4(G)) = {0,1}.
m Cuntz: Study comparision of positive elements.
Recall: p 2mvwNw G & p=w*, v*v <q, somev c A
First attempt: Fora,b e A, :
asib &= a=w"v'vebAb, somevcA.
(Essentially ps ZmvN pp in A** for support projections pa, pp.)
Much better behaved:
aZcub & Ve>O0:(a—e); =w* v'vc bAb, somev.
& a= Iirr7n whbw;,, some (Wp)n.
m (a—¢); is the e-cut-down of a, given by functional
calculus with f(t) = max{0,t — }.
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Comparison of positive elements (Cuntz) Il

Definition 6 (Cuntz 1978, Coward-Elliott-lvanescu 2008)

Cuntz (sub)equivalence of positive elements in A:
azcub & Ve>0:(a—e)y =w", v'v e bAb, somev.
& a= Iirr7n wpbw;,, some (Wn)n.

a~cu b & a ,'j(ju b f_qu a.

Cuntz semigroup:
Cu(A) = (A®K)+ .,

equipped with addition and partial order:
[a] + [b] :=[a® b], [a <[b] = aZcub.
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Comparison of positive elements (Cuntz) Ill

Example 7 (C)

Positive element ain C ® K = K is diagonalizable:

o0
a=>» e
n=1

with rank-one projections e,, and decreasing sequence A\, — 0.
Case 1: If sp(a) finite, then a ~¢, p for finite-rank projection p.

Case 2: If sp(a) is infinite, then (a — &)+ ~cy p for finite-rank
projection p, with rank — oo as e — 0. It follows that all positive
elements with infinite spectrum are Cuntz equivalent. Thus:

12

CU((C) = K+/NCU N
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Murray-von Neumann vs Cuntz semigroup |

Examples:

A V(A) Cu(A)

C N N:=NU{co}
C([0,1]) N Lsc([0, 1], N)
I14-factor [0, c0) [0, 00) LI (0, 0]
Cri(F) N N U (0, o]

Moo N[3] N[3] U (0, 0]

m Cu(A) encodes more information than V(A) — for example,
Cu(A) always encodes the ideal lattice and tracial simplex

m Cu(A) is more difficult to compute than V(A) — for example,
V(-) is homotopy invariant, while Cu(-) is not
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Murray-von Neumann vs Cuntz semigroup |l

m V(.) classifies finitely-generated, projective modules.
V(A) = {f.g. projective A-modules} .

m If A has stable rank one (A~ C Ais norm-dense), then
Cu(A) classifies countably-generated Hilbert modules.

Cu(A) = {c.g. Hilbert A-modules} /~.

Example 8 (C;.;(Fx))

Dykema-Haagerup-Regrdam 1997: C; ,(F..) stable rank one
Dykema-Rgrdam '00, Robert '12:  Cu(C:,4(Fo)) = N U (0, o0].

Consequence: We know all c.g. Hilbert C;, ;(F..)-modules.

Question 9
Is Cu(Cy(Fn)) = NU(0,00] for ne {2,3,...}?
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Classification of morphisms (1)

B has stable rank one if B~' C Bis dense.

Proposition
Let A be AF-algebra, B stable rank one. Then:
(3) Every V(A) — V(B) is induced by A — B.
(") ¢,v: A— B approx. unitarily equivalent iff V(¢) = V().

Robert’s class = inductive limits of one-dimensional
noncommutative CW-complexes with trivial Ki-groups.
Examples: Interval algebra C([0, 1], M,), dimension-drop
algebra {f € C([0,1], Mp ® My) : f(0) e Mp ® 1,f(1) € 1 ® Mg}.

Theorem (Robert 2012)

Let A in Robert’s class, B stable rank one. Then:
(3) Every Cu(A) — Cu(B) is induced by A — B.
(1) ¢,v: A— B approx. unitarily equivalent iff Cu(yp) = Cu(1)).
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Classification of morphisms (2)

m If Ain Robert’s class, B stable rank one, then morphisms
A — B (up to a.u.) correspond to Cu(A) — Cu(B).

Applications:
m Classification of Robert’s class: A = B iff Cu(A) = Cu(B).

m Construction of the Jiang-Su algebra Z as the (unique)
algebra in Robert’s class with Cu(Z) = N U (0, oo].
(Z is unital, separable, simple, nuclear, projectionless,
unique trace; the C*-analog of the hyperfinite I11-factor)
m Embedding results: Z C C;(F)
(using Cu(2) = Cu(Cy(Fx)) and sr(Cr 4y (Foo)) = 1)
~ Cri(Fs) ® Cr4(Fs) is singly generated (T-Winter 2014)

Question 10

Does Z embed into every simple C*-algebra with stable rank
one?
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Thank you!
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Facts about Cuntz comparison of positive elements

m Let X locally compact, Hausdorff, and f, g € Cy(X)+. Then
f Zcu g iff supp(f) € supp(9).
m f(a) Zcy afor every continuous f: Ry — R with f(0) =

m f(a) ~cy afor every continuous f: Ry — R with f(0) =
and f(t) > 0 fort > 0.

W a~cy a and a~c, taforevery t > 0.
B Xx* ~cy X*x for every x € A.
m If a<b,then a 3¢y b.
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