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Comparison of projections (Murray-von Neumann) I

Throughout A is a C∗-algebra.

Definition 1

Murray-von Neumann (sub)equivalence of projections in A:

p ∼MvN q :⇔ p = vv∗,q = v∗v , some v ∈ A.
p ≾MvN q :⇔ p ∼MvN p′ ≤ q, some p′.

Murray-von Neumann semigroup:

V (A) := Proj(A ⊗K)/∼MvN
, [p] + [q] := [p ⊕ q].

K denotes compact operators on ℓ2(N), and A ⊗K is the
stabilization of A, the completion of

⋃
n Mn(A).

Idea: Equivalent projections have the same ‘size’ relative
to A. V (A) encodes ‘sizes’ of projections.
If A is unital, then K0(A) = Grothendieck group of V (A).
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Comparison of projections (Murray-von Neumann) II

p ∼MvN q :⇔ p = vv∗,q = v∗v , some v ∈ A.
V (A) := Proj(A ⊗K)/∼MvN

, [p] + [q] := [p ⊕ q].

Example 2 (C)

Consider projection p in C⊗K = K = K(H). The rank of p is

rk(p) := dimC p(H) ∈ {0,1,2, . . .} =: N.

For p,q ∈ Proj(K), have

p ∼MvN q ⇔ rk(p) = rk(q)
p ≾MvN q ⇔ rk(p) ≤ rk(q).

Moreover, for every n ∈ N there is a projection of rank n. Thus

V (C) = Proj(K)/∼MvN
∼= N, and K0(C) = Gr(N) ∼= Z.
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Comparison of projections (Murray-von Neumann) III

p ∼MvN q :⇔ p = vv∗,q = v∗v , some v ∈ A.
V (A) := Proj(A ⊗K)/∼MvN

, [p] + [q] := [p ⊕ q].

Example 3 (B)

B denotes bounded opertors on H = ℓ2(N). For p ∈ Proj(B):

rk(p) := dimC p(H) ∈ {0,1,2, . . . ,∞} =: N.

Have p ∈ K iff rk(p) <∞, and p ∼MvN 1 iff rk(p) = ∞. Similarly,
projections in B⊗K with infinite rank are MvN equivalent. Thus

V (B) ∼= N = {0,1,2, . . . ,∞}.

For all x , y ∈ N, have x +∞ = ∞ = y +∞, and so

K0(B) = Gr(N) = 0.
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Comparison of projections (Murray-von Neumann) IV

Example 4 (II1-factor)

Let N be a II1-factor, with its unique tracial state τ . For
p,q ∈ Proj(N), Murray-von Neumann showed:

p ∼MvN q :⇔ τ(p) = τ(q),
p ≾MvN q :⇔ τ(p) ≤ τ(q).

Moreover, for every t ∈ [0,1], there is p with τ(p) = t . Thus

Proj(N)/∼MvN
∼= [0,1].

The same holds in each Mn(N), and we get

Proj(Mn(N))/∼MvN
∼= [0,n].

and finally

V (N) ∼= [0,∞), and K0(N) = Gr([0,∞)) = R.
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Comparison of projections: Applications

Type classification of von Neumann algebras
Classification of AF-algebras: A ∼= B iff V (A) ∼= V (B).
Classification of finitely-generated, projective modules:
Given p ∈ Proj(Mn(A)), the module Ep := p(A⊕n) is f.g.
projective. Every f.g. projective module arises this way,
and Ep ∼= Eq iff p ∼MvN q. Thus:

V (A) := Proj(A ⊗K)/∼MvN
∼= {f.g. projective A-modules}/∼=.

Example 5 (C∗
red(Fn))

Reduced group C∗-algebra C∗
red(Fn) of free group.

Pimsner-Voiculescu 1982: K0(C∗
red(Fn)) ∼= Z

Dykema-Haagerup-Rørdam 1997: V (C∗
red(Fn)) ∼= N

Consequence: Every f.g. projective C∗
red(Fn)-module is free.
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Comparison of positive elements (Cuntz) I

Problem: Many interesting C∗-algebras contain only few (if
any) projections.
Kadison-Kaplansky conjecture:
If G is torsion-free, then Proj(C∗

red(G)) = {0,1}.
Cuntz: Study comparision of positive elements.

Recall: p ≾MvN q :⇔ p = vv∗, v∗v ≤ q, some v ∈ A.

First attempt: For a,b ∈ A+:

a ≾ b :⇔ a = vv∗, v∗v ∈ bAb, some v ∈ A.

(Essentially pa ≾MvN pb in A∗∗ for support projections pa,pb.)

Much better behaved:

a ≾Cu b :⇔ ∀ ε > 0 : (a − ε)+ = vv∗, v∗v ∈ bAb, some v .
⇔ a = lim

n
wnbw∗

n , some (wn)n.

(a − ε)+ is the ε-cut-down of a, given by functional
calculus with f (t) = max{0, t − ε}.
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Comparison of positive elements (Cuntz) II

Definition 6 (Cuntz 1978, Coward-Elliott-Ivanescu 2008)

Cuntz (sub)equivalence of positive elements in A:

a ≾Cu b :⇔ ∀ ε > 0 : (a − ε)+ = vv∗, v∗v ∈ bAb, some v .
⇔ a = lim

n
wnbw∗

n , some (wn)n.

a ∼Cu b :⇔ a ≾Cu b ≾Cu a.

Cuntz semigroup:

Cu(A) := (A ⊗K)+/∼Cu
,

equipped with addition and partial order:

[a] + [b] := [a ⊕ b], [a] ≤ [b] :⇔ a ≾Cu b.
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Comparison of positive elements (Cuntz) III

Example 7 (C)

Positive element a in C⊗K = K is diagonalizable:

a =
∞∑

n=1

λnen

with rank-one projections en, and decreasing sequence λn → 0.

Case 1: If sp(a) finite, then a ∼Cu p for finite-rank projection p.

Case 2: If sp(a) is infinite, then (a − ε)+ ∼Cu p for finite-rank
projection p, with rank → ∞ as ε→ 0. It follows that all positive
elements with infinite spectrum are Cuntz equivalent. Thus:

Cu(C) = K+/∼Cu
∼= N.
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Murray-von Neumann vs Cuntz semigroup I

Examples:

A V (A) Cu(A)

C N N := N ∪ {∞}

C([0,1]) N Lsc([0,1],N)

II1-factor [0,∞) [0,∞) ⊔ (0,∞]

C∗
red(F∞) N N ⊔ (0,∞]

M2∞ N[1
2 ] N[1

2 ] ⊔ (0,∞]

Cu(A) encodes more information than V (A) – for example,
Cu(A) always encodes the ideal lattice and tracial simplex
Cu(A) is more difficult to compute than V (A) – for example,
V (·) is homotopy invariant, while Cu(·) is not
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Murray-von Neumann vs Cuntz semigroup II

V (·) classifies finitely-generated, projective modules.

V (A) ∼= {f.g. projective A-modules}/∼=.

If A has stable rank one (A−1 ⊆ A is norm-dense), then
Cu(A) classifies countably-generated Hilbert modules.

Cu(A) ∼= {c.g. Hilbert A-modules}/∼=.

Example 8 (C∗
red(F∞))

Dykema-Haagerup-Rørdam 1997: C∗
red(F∞) stable rank one

Dykema-Rørdam ’00, Robert ’12: Cu(C∗
red(F∞)) ∼= N ⊔ (0,∞].

Consequence: We know all c.g. Hilbert C∗
red(F∞)-modules.

Question 9

Is Cu(C∗
red(Fn)) ∼= N ⊔ (0,∞] for n ∈ {2,3, . . .}?
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Classification of morphisms (1)

B has stable rank one if B−1 ⊆ B is dense.

Proposition

Let A be AF-algebra, B stable rank one. Then:
(∃) Every V (A) → V (B) is induced by A → B.
(!) φ,ψ : A → B approx. unitarily equivalent iff V (φ) = V (ψ).

Robert’s class = inductive limits of one-dimensional
noncommutative CW-complexes with trivial K1-groups.
Examples: Interval algebra C([0,1],Mn), dimension-drop
algebra {f ∈ C([0,1],Mp ⊗ Mq) : f (0) ∈ Mp ⊗ 1, f (1) ∈ 1 ⊗ Mq}.

Theorem (Robert 2012)

Let A in Robert’s class, B stable rank one. Then:
(∃) Every Cu(A) → Cu(B) is induced by A → B.
(!) φ,ψ : A → B approx. unitarily equivalent iff Cu(φ) = Cu(ψ).
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Classification of morphisms (2)

If A in Robert’s class, B stable rank one, then morphisms
A → B (up to a.u.) correspond to Cu(A) → Cu(B).

Applications:
Classification of Robert’s class: A ∼= B iff Cu(A) ∼= Cu(B).
Construction of the Jiang-Su algebra Z as the (unique)
algebra in Robert’s class with Cu(Z) ∼= N ∪ (0,∞].
(Z is unital, separable, simple, nuclear, projectionless,
unique trace; the C∗-analog of the hyperfinite II1-factor)
Embedding results: Z ⊆ C∗

red(F∞)
(using Cu(Z) ∼= Cu(C∗

red(F∞)) and sr(C∗
red(F∞)) = 1)

; C∗
red(F∞)⊗ C∗

red(F∞) is singly generated (T-Winter 2014)

Question 10

Does Z embed into every simple C∗-algebra with stable rank
one?
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Thank you!
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Facts about Cuntz comparison of positive elements

Let X locally compact, Hausdorff, and f ,g ∈ C0(X )+. Then
f ≾Cu g iff supp(f ) ⊆ supp(g).
f (a) ≾Cu a for every continuous f : R+ → R+ with f (0) = 0.
f (a) ∼Cu a for every continuous f : R+ → R+ with f (0) = 0
and f (t) > 0 for t > 0.
a ∼Cu at and a ∼Cu ta for every t > 0.
xx∗ ∼Cu x∗x for every x ∈ A.
If a ≤ b, then a ≾Cu b.
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