A gentle introduction to Cuntz semigroups Part 2

Hannes Thiel

Chalmers University of Technology and University of Gothenburg

20. March 2023 Noncommutative Geometry in NYC (online seminar)

Reminder: Murray-von Neumann vs Cuntz semigroup

- Murray-von Neumann semigroup V(A) encodes 'size' of projections in A ⊗ K.
- Cuntz semigroup Cu(A) encodes 'size' of positive elements in A ⊗ K.

Α	V(A)	Cu(A)
\mathbb{C}	\mathbb{N}	$\overline{\mathbb{N}}:=\mathbb{N}\cup\{\infty\}$
<i>C</i> ([0, 1])	\mathbb{N}	$Lsc([0,1],\overline{\mathbb{N}})$
${\mathcal Z}$ or $\mathit{C}^*_{\mathrm{red}}({\mathbb F}_\infty)$	\mathbb{N}	$\mathbb{N}\sqcup(0,\infty]$

- Cu(A) encodes more information than V(A) for example,
 Cu(A) always encodes the ideal lattice and tracial simplex
- Cu(A) is more difficult to compute than V(A) for example,
 V(·) is homotopy invariant, while Cu(·) is not

Existence of traces I

- Projection *p* is **finite** if $p \sim_{MvN} q \le p$ implies q = p.
- *A* is **stably finite** if every projection in $A \otimes \mathbb{K}$ is finite.
- **Trace** is state $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$ for all a, b.

Lemma 1

Let A be simple, unital. If A admits trace, then A is stably finite.

Proof.

Let τ trace on A. Then τ is **faithful**: If $a \in A_+$ satisfies $\tau(a) = 0$, then a = 0. Let $p, q \in \operatorname{Proj}(A)$ with $p \sim_{\operatorname{MvN}} q \leq p$. Pick $v \in A$ such that $p = vv^*$ and $q = v^*v \leq p$. Then

$$\tau(\boldsymbol{\rho}-\boldsymbol{v}^*\boldsymbol{v})=\tau(\boldsymbol{\rho})-\tau(\boldsymbol{v}^*\boldsymbol{v})=\tau(\boldsymbol{\rho})-\tau(\boldsymbol{v}\boldsymbol{v}^*)=\boldsymbol{0}.$$

Since $p - v^* v \in A_+$, get $p - v^* v = 0$. Thus, q = p. Same argument applies in $M_n(A)$, since $M_n(A) = A \otimes M_n(\mathbb{C})$ is simple, unital and admits trace $\tau \otimes \operatorname{tr}_n$.

Existence of traces II

Lemma

Let A be simple, unital. If A admits trace, then A is stably finite.

- Converse? Remains open. (One of the biggest open problems in C*-algebras.)
- A is exact if $A \otimes -$ preserves short exact sequences: If $0 \rightarrow I \rightarrow B \rightarrow B/I \rightarrow 0$ is exact, then so is

 $0 \to A \otimes I \to A \otimes B \to A \otimes (B/I) \to 0.$

Most 'everyday life' C*-algebras are exact: Every nuclear C*-algebra is exact. Exactness passes to subalgebras, quotients and inductive limits.

Theorem (Cuntz 1978, Blackadar-Handelman 1982, Haagerup 1991/2014)

Let A be simple, unital, exact. Then A admits a trace iff A is stably finite.

Existence of traces III

Theorem

Let A be simple, unital, exact. Then A admits a trace iff A is stably finite.

Proof. (Sketch of \Leftarrow).

Cuntz 1978: A admits a dimension function: Additive, order-preserving, normalized map d: Cu(A) → [0,∞]. Consider M := {n[1_A] : n ∈ N} ⊆ Cu(A) and define

 $d_0: M \rightarrow [0,\infty], \quad d_0(n[1_A]) := n.$

(Well-defined since *A* stably finite.) Use order-theoretic Hahn-Banach to extend d_0 to $d: Cu(A) \rightarrow [0, \infty]$.

- Blackadar-Handelman 1982: Dimension functions are induced by quasitraces.
- Haagerup 1991/2014:
 Quasitraces on exact C*-algebras are traces.

Structure and classification of simple C*-algebras I

- Elliott program: Classify simple, nuclear C*-algebras using K-theoretic and tracial data Ell(-).
- Simple C*-algebras come in two main flavors: Stably finite (all projections in A ⊗ K are finite) and **purely infinite**: Every projection in A is infinite and there are 'many projections' (every hereditary subalgebra contains a nonzero projection)

(Analogous to II_1 factors, and III factors.)

Theorem (Kirchberg-Phillips 2000)

If A and B are also purely infinite, then:

$$A \cong B \quad \Leftrightarrow \quad A \sim_{\mathrm{KK}} B.$$

If A and B also satisfy the Universal Coefficient Theorem (UCT), then $A \sim_{KK} B$ iff $K_*(A) \cong K_*(B)$. In this case:

 $A \cong B \quad \Leftrightarrow \quad K_*(A) \cong K_*(B) \quad \Leftrightarrow \quad \mathsf{Ell}(A) \cong \mathsf{Ell}(B).$

Structure and classification of simple C*-algebras II

- Elliott program: Classify simple, nuclear C*-algebras using K-theoretic and tracial data Ell(-).
- Main flavors: Stably finite and purely infinite.
- Kirchberg-Phillips (2000) handled purely infinite case.

Theorem (Toms 2008)

There exist simple, nuclear, stably finite A and B with $EII(A) \cong EII(B)$, yet $A \ncong B$. (Since $Cu(A) \ncong Cu(B)$.)

Need more regularity to classify with EII(-).

Definition 2

A is \mathcal{Z} -stable if $A \cong \mathcal{Z} \otimes A$. (C*-analog of being McDuff)

Have $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, and so $\mathcal{Z} \otimes A$ is always \mathcal{Z} -stable:

$$\mathcal{Z} \otimes \mathcal{A} \cong (\mathcal{Z} \otimes \mathcal{Z}) \otimes \mathcal{A} \cong \mathcal{Z} \otimes (\mathcal{Z} \otimes \mathcal{A}).$$

• Have $\text{Ell}(\mathcal{Z}) \cong \text{Ell}(\mathbb{C})$, and so $\text{Ell}(A) \cong \text{Ell}(\mathcal{Z} \otimes A)$.

Structure and classification of simple C*-algebras III

Definition

A is \mathcal{Z} -stable if $A \cong \mathcal{Z} \otimes A$.

Theorem (many hands 1976-2019)

Let A and B simple, nuclear, \mathcal{Z} -stable satisfying UCT. Then:

 $A \cong B \quad \Leftrightarrow \quad \mathsf{EII}(A) \cong \mathsf{EII}(B).$

This completes the Elliott program under the additional assumption of *Z*-stability and UCT.

Question 3 (The UCT problem)

Do all nuclear C*-algebras satisfy the UCT?

Structure and classification of simple C*-algebras IV

Theorem (many hands 1976-2019)

Let A and B simple, nuclear, \mathcal{Z} -stable satisfying UCT. Then:

 $A \cong B \quad \Leftrightarrow \quad \mathsf{EII}(A) \cong \mathsf{EII}(B).$

This completes the Elliott program under the additional assumption of *Z*-stability and UCT.

Theorem (Kirchberg)

A simple, \mathcal{Z} -stable C*-algebra is either stably finite or purely infinite.

Theorem (Rørdam 2003)

There exists a simple, unital, nuclear C^* -algebra satisfying UCT that contains a finite and an infinite projection. (It is neither stably finite, nor purely infinite. It is not \mathcal{Z} -stable.)

The Toms-Winter conjecture I

Toms-Winter conjecture 2009

For simple, nuclear A, TFAE:

- 1 A has finite nuclear dimension.
- **2** A is \mathcal{Z} -stable.

3 Cu(A) is almost unperforated: If (n+1)[a] ≤ n[b] then [a] ≤ [b].

- Rørdam 2004: (2)⇒(3)
- Winter 2012: (1)⇒(2)
- Castillejos-Evington-Tikuisis-White-Winter 2021: (2)⇒(1)
- The implication $(3) \Rightarrow (2)$ remains open. Partial results:
 - Matui-Sato 2012: (3) \Rightarrow (2) holds if $\partial_e T(A)$ finite.
 - Kirchberg-Rørdam, Sato, Toms-White-Winter: $(3) \Rightarrow (2)$ holds if $\partial_e T(A)$ compact and finite covering dimension.
 - T 2020: (3)⇒(2) holds if A is ASH-algebra (strong form of nuclearity) and has stable rank one.

The Toms-Winter conjecture II

Theorem 4 (T 2020)

Toms-Winter conj. holds for ASH-algebras of stable rank one.

Corollary 5

The Toms-Winter conjecture holds for minimal crossed products $C(X) \rtimes \mathbb{Z}$.

Proof.

- Orbit breaking subalgebra *B* of $A = C(X) \rtimes \mathbb{Z}$ is ASH.
- Phillips 2014: Cu(A) is almost unperforated iff Cu(B) is.
- Archey-Buck-Phillips 2018: A is \mathcal{Z} -stable iff B is.
- Alboiu-Lutley 2022: *B* has stable rank one. Cu(A) almost unperforated $\Rightarrow Cu(B)$ almost unperforated $\Rightarrow B$ is \mathcal{Z} -stable $\Rightarrow A$ is \mathcal{Z} -stable

The Toms-Winter conjecture III

Toms-Winter conjecture 2009: For simple, nuclear A, TFAE:

- **2** A is \mathcal{Z} -stable.
- 3 Cu(A) is almost unperforated: If $(n+1)[a] \le n[b]$ then $[a] \le [b]$.

Proposition 6

 $Cu(A) \cong Cu(\mathcal{Z} \otimes A)$ iff Cu(A) is almost unperforated and **almost** *divisible*: For [a] and n there is [b] with $n[b] \leq [a] \leq (n+1)[b]$.

For simple, nuclear A, consider:

- (2) A is \mathcal{Z} -stable: $A \cong \mathcal{Z} \otimes A$.
- (3a) $\operatorname{Cu}(A) \cong \operatorname{Cu}(\mathcal{Z} \otimes A)$.
- (3b) Cu(A) is almost unperforated and almost divisible.
- (3c) Cu(A) is almost unperforated.
 - **known:** $(2) \Rightarrow (3a) \Leftrightarrow (3b) \Rightarrow (3c)$

The Toms-Winter conjecture IV

Modulo 'strong nuclearity', Toms-Winter conjecture reduces to:

Does almost unperforated imply almost divisible for Cu(A)?

Theorem 7 (Antoine-Perera-Robert-Thiel 2022)

If A has stable rank one, then Cu(A) has **Riesz interpolation**: If $[a_j] \leq [c_k]$ for j, k = 1, 2, there is [b] such that $[a_j] \leq [b] \leq [c_k]$.

Corollary 8

If A is separable, stable rank one, then Cu(A) is semilattice: For $[c_1], [c_2] \in Cu(A)$ exists infimum $[c_1] \wedge [c_2]$.

Proof.

Consider the set of lower bounds $L := \{[a] : [a] \le [c_1], [c_2]\}$. Riesz interpolation shows *L* is upward directed. Separability gives that *L* has supremum.

Thank you!

References I

- 1 Antoine, Perera, Thiel. Tensor products and regularity properties of Cuntz semigroups. **Mem. Amer. Math. Soc.** 251 (2018), no. 1199.
- Antoine, Perera, Robert, Thiel. C*-algebras of stable rank one and their Cuntz semigroups. Duke Math. J. 171 (2022).
- Blackadar, Handelman. Dimension functions and traces on C*-algebras. J. Funct. Anal. 45 (1982).
- Castillejos, Evington, Tikuisis, White, Winter. Nuclear dimension of simple C*-algebras. Invent. Math. 224 (2021).
- 5 Cuntz. Dimension functions on simple C*-algebras. Math.
 Ann. 233 (1978)
- Haagerup. Quasitraces on exact C*-algebras are traces.
 C. R. Math. Acad. Sci., Soc. R. Can. 36 (2014).

References II

- Matui, Sato. Strict comparison and Z-absorption of nuclear C*-algebras. Acta Math. 209 (2012).
- B Phillips. A classification theorem for nuclear purely infinite simple C*-algebras. Doc. Math. 5 (2000).
- Rørdam. A simple C*-algebra with a finite and an infinite projection. Acta Math. 191 (2003).
- Rørdam. The stable and the real rank of Z-absorbing C*-algebras. Int. J. Math. 15 (2004).
- **11** Thiel. Ranks of operators in simple C*-algebras with stable rank one. **Commun. Math. Phys.** 377 (2020).
- Toms. On the classification problem for nuclear C*-algebras. Annals Math. 167 (2008).
- 13 Toms, Winter. The Elliott conjecture for Villadsen algebras of the first type J. Funct. Anal. 256 (2009).
- Winter. Nuclear dimension and Z-stability of pure C*-algebras. Invent. Math. 187 (2012).