Domains arising in operator algebras

Hannes Thiel

Chalmers University of Technology and University of Gothenburg

2. July 2024 Topology, Algebra, and Categories in Logic (TACL) Barcelona

Definition

A **C*-algebra** is a Banach algebra with an involution such that $\|a^*a\| = \|a\|^2$ (for all $a \in A$)

We consider only unital, separable C*-algebras.

Theorem (Gelfand 1940s)

A C*-algebra A is commutative if and only if $A \cong C(X)$, where

$$C(X) = \{f \colon X \to \mathbb{C} \mid f \text{ continuous}\}$$

with $\|\cdot\|_{\infty}$ -norm, for some compact, metrizable space X.

- C*-algebra '=' functions on noncommutative topol. space
- Models noncommuting observables in quantum physics.
- C*-algebras associated to groups or dynamical systems.

Definition

Given C*-algebra A, a **Hilbert** A-module is an A-module E together with a generalized inner product $\langle \cdot, \cdot \rangle \colon E \times E \to A$ such that E is complete for $\|\xi\| = \|\langle \xi, \xi \rangle\|^{1/2}$.

Examples

- Hilbert C-module = Hilbert space
- $A^{\oplus n}$ w.r.t. $\langle (a_1, \ldots, a_n), (b_1, \ldots, b_n) \rangle = \sum_k a_k^* b_k$
- every finitely generated, projective A-module

$$\overline{\bigoplus_{\mathbb{N}} A} = \{ (a_n)_{n \in \mathbb{N}} : a_n \in A, \sum_n a_n^* a_n \text{ converges in } A \}$$
$$\overline{\bigoplus_{\mathbb{N}} \mathbb{C}} = \ell^2(\mathbb{N})$$

The domain semigroup of Hilbert modules 1

Given a C^* -algebra A, we consider:

 $\mathcal{H}(A) := \{ \text{countably generated, Hilbert } A\text{-modules} \} /_{\cong}$

- $\mathcal{H}(A)$ is abelian monoid with $[E] + [F] := [E \oplus F]$.
- ℋ(A) is pre-ordered with [E] ≤ [F] if E → F as closed submodule.

Theorem (Coward-Elliott-Ivanescu, Crelle 2008)

Under the mild assumption of 'stable rank one' (ensuring that $\mathcal{H}(A)$ is partially ordered), $\mathcal{H}(A)$ is a **domain semigroup**:

- Every directed set in $\mathcal{H}(A)$ has a supremum (dcpo).
- Every [E] is the supremum of $\{[E'] \in \mathcal{H}(A) : [E'] \ll [E]\}$.
- If $[E'] \ll [E]$ and $[F'] \ll [F]$, then $[E' \oplus F'] \ll [E \oplus F]$.
- If $C, D \subseteq \mathcal{H}(A)$ directed, then $\sup(C + D) = \sup C + \sup D$.

The domain semigroup of Hilbert modules 2

Given a C^* -algebra A, we consider:

 $\mathcal{H}(A) := \{ \text{countably generated, Hilbert } A\text{-modules} \}/_{\cong}$

Similar to Murray-von Neumann semigroup:

 $V(A) := \{ \text{finitely generated, projective } A \text{-modules} \} /_{\cong}$

The Grothendieck completion of V(A) is $K_0(A)$.

Example ($A = \mathbb{C}$)

• We have $V(\mathbb{C}) \cong \mathbb{N} = \{0, 1, 2, \ldots\}.$

Every finitely generated, projective \mathbb{C} -modules *E* is free, and so $E \cong \mathbb{C}^n$ for some $n \in \mathbb{N}$.

We have H(C) ≅ N = {0, 1, 2, ..., ∞}.
 Hilbert C-module = Hilbert space
 Countably generated Hilbert C-modules = separable
 Hilbert spaces: Cⁿ for n ∈ N and also l²(N)

Examples:

A	V(A)	$\mathcal{H}(A)$
\mathbb{C}	\mathbb{N}	$\overline{\mathbb{N}}:=\mathbb{N}\cup\{\infty\}$
<i>C</i> ([0, 1])	\mathbb{N}	$Lsc([0,1],\overline{\mathbb{N}})$
$C^*_{\mathrm{red}}(\mathbb{F}_\infty)$	\mathbb{N}	$\mathbb{N}\sqcup(0,\infty]$

- *H*(*A*) encodes more information than *V*(*A*) for example, *H*(*A*) always encodes the ideal lattice and tracial simplex
- ℋ(A) is more difficult to compute than V(A) for example, V(·) is homotopy invariant, while ℋ(·) is not
- Understanding H(A) is crucial for the structure theory of C*-algebras

Semilattice structure of Hilbert modules 1

Theorem (Coward-Elliott-Ivanescu, Crelle 2008)

If A has stable rank one, then $\mathcal{H}(A)$ is a **domain semigroup**.

Theorem (Antoine-Perera-Robert-T, Duke 2022)

If A has stable rank one, then $\mathcal{H}(A)$ is a semilattice:

Given $[E], [F] \in \mathcal{H}(A)$, the infimum $[E] \land [F] \in \mathcal{H}(A)$ exists.

Application for C*-algebras of stable rank one:

- Solution of the Global Glimm Problem: Highly noncommutative C*-algebras can be untwisted.
- Verification of the Blackadar-Handelman Conjecture: Dimension functions form a Choquet simplex.
- Solution of the Rank Problem: Every lower-semicontinuous, affine, strictly positive function arises as the rank of an operator.

Semilattice structure of Hilbert modules 2

Theorem (Antoine-Perera-Robert-T, Duke 2022)

If A has stable rank one, then $\mathcal{H}(A)$ is a **semilattice**.

Proof.

1. We verify the Riesz interpolation property: Given countably generated Hilbert modules E_1 , E_2 and F_1 , F_2 satisfying

$$E_j \hookrightarrow F_k$$
 (for $j = 1, 2$ and $k = 1, 2$)

there exists a countably generated Hilbert module G such that

$$E_j \hookrightarrow G \hookrightarrow F_k$$
 (for $j = 1, 2$ and $k = 1, 2$)

2. Given $[F_1], [F_2] \in \mathcal{H}(A)$, the set of lower bounds

$$L := \big\{ [E] \in \mathcal{H}(A) : [E] \leq [F_1], [F_2] \big\}$$

is directed. Then $[E] \wedge [F] = \sup L$ exists as $\mathcal{H}(A)$ is dcpo.

Thank you!

- Antoine, Perera, Robert, Thiel. C*-algebras of stable rank one and their Cuntz semigroups, **Duke Math. J.** 171 (2022).
- Antoine, Perera, Thiel. Tensor products and regularity properties of Cuntz semigroups. Mem. Amer. Math. Soc. 251 (2018), no. 1199.
- Coward, Elliott, Ivanescu. The Cuntz semigroup as an invariant for C*-algebras. J. Reine Angew. Math. 623 (2008).
- 4 Cuntz. Dimension functions on simple C*-algebras. Math.
 Ann. 233 (1978)
- 5 Gardella, Perera. The modern theory of Cuntz semigroups of C*-algebras. arxiv:2212.02290, 2022.