Domains arising in operator algebras

Hannes Thiel

Chalmers University of Technology and University of Gothenburg

17. December 2025 Workshop *Domain Theory and Its Application*

Tianyuan Mathematics Research Center (TYMC) Chaishitan Reservoir in Yiliang, Kunming, Yunnan Province, China

What are operator algebras? I

Definition

A C^* -algebra is a norm-closed *-invariant subalgebra $A \subseteq \mathcal{B}(H)$ of bounded operators on some Hilbert space H.

Example (Commutative *C**-algebras)

 $C(X) = \{f \colon X \to \mathbb{C} : f \text{ continuous} \}$ for X compact, Hausdorff, with pointwise addition, multiplication and involution, and norm

$$||f||_{\infty}=\sup\big\{|f(x)|:x\in X\big\}.$$

Acting as multiplication operators: $C(X) \subseteq \mathcal{B}(L^2(X, \mu))$. Every unital, commutative C^* -algebra is of this form.

What are operator algebras? II

- C*-algebras = norm-closed *-subalgebra of $\mathcal{B}(H)$
- Unital, commutative C*-algebras = C(X) for some compact, Hausdorff space X

Contravariant equivalence of categories

- C*-algebra '=' functions on noncommutative topol. space
- Models noncommuting observables in quantum physics.

Example (Reduced group C*-algebra)

Let G be a discrete group. Left regular representation: $g \in G$ acts by unitary u_g on $\ell^2(G)$, shifting indices $u_g : (\xi_h)_h \mapsto (\xi_{gh})_h$.

$$C^*_{\mathrm{red}}(G) := \overline{\mathsf{span}\{u_g : g \in G\}}^{\|\cdot\|} \subseteq \mathcal{B}(\ell^2(G))$$

Comparison of projections (Murray-von Neumann) I

Throughout A is a C^* -algebra.

Definition

Projection = self-adjoint idempotent ($p \in A$ with $p = p^2 = p^*$) **Murray-von Neumann (sub)equivalence** of projections in A:

$$p \sim_{\text{MvN}} q$$
 : \Leftrightarrow $p = vv^*, q = v^*v$, some $v \in A$.
 $p \preceq_{\text{MvN}} q$: \Leftrightarrow $p = rqr^*$, some $r \in A$.

Murray-von Neumann semigroup:

$$V(A) := \mathsf{Proj}(A \otimes \mathcal{K})/_{\sim_{\mathsf{MvN}}}, \quad [p] + [q] := [p \oplus q].$$

- \mathcal{K} denotes compact operators on $\ell^2(\mathbb{N})$, and $A \otimes \mathcal{K}$ is the **stabilization** of A, the completion of $\bigcup_n M_n(A)$.
- Idea: Equivalent projections have the same 'size' relative to A. V(A) encodes 'sizes' of projections.
- If *A* is unital, then $K_0(A)$ = Grothendieck group of V(A).

Comparison of projections (Murray-von Neumann) II

$$egin{aligned} & p \sim_{\mathrm{MvN}} q & :\Leftrightarrow & p = vv^*, q = v^*v, \text{ some } v \in A. \ & p \precsim_{\mathrm{MvN}} q & :\Leftrightarrow & p = rqr^*, \text{ some } r \in A. \ & V(A) := \mathrm{Proj}(A \otimes \mathbb{K})/_{\sim_{\mathrm{MvN}}}, \quad [p] + [q] := [p \oplus q]. \end{aligned}$$

Example 1 (C)

Consider projection p in $\mathbb{C} \otimes \mathcal{K} = \mathcal{K} = \mathcal{K}(H)$. The **rank** of p is $\mathsf{rk}(p) := \dim_{\mathbb{C}} p(H) \in \{0, 1, 2, \ldots\} =: \mathbb{N}$.

For $p, q \in Proj(\mathcal{K})$, have

$$p \sim_{\text{MvN}} q \quad \Leftrightarrow \quad \text{rk}(p) = \text{rk}(q)$$

 $p \preceq_{\text{MvN}} q \quad \Leftrightarrow \quad \text{rk}(p) \leq \text{rk}(q).$

Moreover, for every $n \in \mathbb{N}$ there is a projection of rank n. Thus

$$V(\mathbb{C})=\operatorname{\mathsf{Proj}}(\mathcal{K})/_{\sim_{\operatorname{MvN}}}\cong \mathbb{N}, \ \ \text{and} \ \ K_0(\mathbb{C})=\operatorname{\mathsf{Gr}}(\mathbb{N})\cong \mathbb{Z}.$$

Comparison of projections (Murray-von Neumann) III

$$p\sim_{\mathrm{MvN}}q:\Leftrightarrow p=vv^*,q=v^*v, \text{ some }v\in A.$$
 $p\precsim_{\mathrm{MvN}}q:\Leftrightarrow p=rqr^*, \text{ some }r\in A.$ $V(A):=\mathrm{Proj}(A\otimes \mathbb{K})/_{\sim_{\mathrm{MvN}}}, \quad [p]+[q]:=[p\oplus q].$

Example 2 (*C*([0, 1]))

Since [0,1] is homotopy equivalent to $\{pt\}$, have C([0,1]) homotopy equivalent to $C(\{pt\}) = \mathbb{C}$. Since $V(\cdot)$ is homotopy invariant, we get

$$V ig(C([0,1]) ig) \cong V(\mathbb{C}) \cong \mathbb{N}, \quad \text{and} \quad K_0 ig(C([0,1]) ig) \cong \mathbb{Z}.$$

Example 3 (Reduced group C^* -algebra $C^*_{red}(\mathbb{F}_n)$ of free group)

Pimsner-Voiculescu 1982: $K_0(C^*_{red}(\mathbb{F}_n)) \cong \mathbb{Z}$ Dykema-Haagerup-Rørdam 1997: $V(C^*_{red}(\mathbb{F}_n)) \cong \mathbb{N}$

Comparison of positive elements (Cuntz) I

- Problem: Many interesting *C**-algebras contain few (if any) projections, and MvN semigroup contains no information.
- Idea (Cuntz): Comparison of (abundant) positive elements (= self-adjoint elements with spectrum in $[0, \infty)$)

Recall: $p \lesssim_{MvN} q$: \Leftrightarrow $p = rqr^*$, some $r \in A$. First Attempt: $a \lesssim_{Cu} b$: \Leftrightarrow $a = rbr^*$, some $r \in A$.

Definition (Cuntz 1978)

Cuntz (sub)equivalence of positive elements in A:

$$a \lesssim_{\mathrm{Cu}} b :\Leftrightarrow \forall \varepsilon > 0 : ||a - rbr^*|| < \varepsilon, \text{ for some } r \text{ in } A.$$

$$\Leftrightarrow a = \lim_{n} r_n b r_n^*, \text{ for some } (r_n)_n \text{ in } A.$$

$$a \sim_{\mathrm{Cu}} b :\Leftrightarrow a \lesssim_{\mathrm{Cu}} b \lesssim_{\mathrm{Cu}} a.$$

Cuntz semigroup:

$$\mathsf{Cu}(A) := (A \otimes \mathcal{K})_{+/\sim_{C_1}},$$

Comparison of positive elements (Cuntz) II

Definition (Cuntz 1978)

$$a \lesssim_{\mathrm{Cu}} b :\Leftrightarrow a = \lim_{n} r_{n} b r_{n}^{*}, \text{ for some } (r_{n})_{n} \text{ in } A.$$

$$a \sim_{Cu} b :\Leftrightarrow a \precsim_{Cu} b \precsim_{Cu} a.$$

Cuntz semigroup $Cu(A) := (A \otimes \mathcal{K})_{+/\sim_{Cu}}$, equipped with addition and partial order:

$$[a] + [b] := [a \oplus b], \quad [a] \leq [b] :\Leftrightarrow a \lesssim_{Cu} b.$$

Theorem (Coward-Elliott-Ivanescu 2008)

Cu(A) is ω -domain and commutative monoid:

- (O1) Every increasing sequence has a supremum. (ω -dcpo)
- (O2) Every x is $x = \sup_{n} x_n$ with $x_n \ll_{\omega} x_{n+1}$. (ω -continuous)
- (O3) If $x' \ll_{\omega} x$ and $y' \ll_{\omega} y$, then $x' + y' \ll_{\omega} x + y$.
- (O4) If $x \ll_{\omega} y + z$, then $x \ll_{\omega} y' + z'$ some $y' \ll_{\omega} y$, $z' \ll_{\omega} z$.

Examples of Cuntz semigroups I

Theorem (Coward-Elliott-Ivanescu 2008)

Cu(A) is ω -domain semigroup. If A is separable, then Cu(A) is countably based and thus a (continuous) domain.

*-homomorphism $A \to B$ induces Scott continuous monoid morphism $Cu(A) \to Cu(B)$, preserving the way-below relation!

Example 1 (\mathbb{C} , revisited)

The **rank** of a positive element a in $\mathbb{C} \otimes \mathcal{K} = \mathcal{K} = \mathcal{K}(H)$ is:

$$\mathsf{rk}(a) := \dim_{\mathbb{C}} a(H) \in \{0, 1, 2, \dots, \infty\} =: \overline{\mathbb{N}}.$$

For $a, b \in \mathcal{K}_+$, have

$$a \sim_{Cu} b \Leftrightarrow \mathsf{rk}(a) = \mathsf{rk}(b), \quad a \precsim_{Cu} b \Leftrightarrow \mathsf{rk}(a) \le \mathsf{rk}(b).$$

Moreover, every $n \in \overline{\mathbb{N}}$ is realized by positive element. Thus

$$Cu(\mathbb{C}) \cong \overline{\mathbb{N}}.$$

Examples of Cuntz semigroups II

$$a \lesssim_{\mathrm{Cu}} b :\Leftrightarrow a = \lim_{n} r_{n} b r_{n}^{*}$$
, for some $(r_{n})_{n}$ in A .

$$\textbf{\textit{a}} \sim_{Cu} \textbf{\textit{b}} \ :\Leftrightarrow \ \textbf{\textit{a}} \precsim_{Cu} \textbf{\textit{b}} \precsim_{Cu} \textbf{\textit{a}}, \quad \mathsf{Cu}(\textbf{\textit{A}}) := (\textbf{\textit{A}} \otimes \mathcal{K})_+/_{\sim_{Cu}}.$$

Example 2 (C([0,1]), revisited)

The Cuntz semigroup is not homotopy invariant.

For $f, g \in C([0, 1])_+$, have

$$f \precsim_{\mathbf{Cu}} g \quad \Leftrightarrow \quad \{t \in [0,1] : f(t) \neq 0\} \subseteq \{t \in [0,1] : g(t) \neq 0\}.$$

We get

$$\textit{C}([0,1])_+/_{\sim_{Cu}} \quad \cong \quad \mathcal{O}([0,1]) \quad = \quad Lsc\big([0,1],\{0,1\}\big),$$

and using $C([0,1]) \otimes \mathcal{K} \cong C([0,1],\mathcal{K})$ we deduce

$$\mathsf{Cu}\big(\textit{C}([0,1])\big) \quad \cong \quad \textit{C}([0,1],\mathcal{K})_+/_{\sim_{\mathsf{Cu}}} \quad \cong \quad \mathsf{Lsc}\big([0,1],\overline{\mathbb{N}}\big),$$

while $V(C([0,1])) \cong \mathbb{N}$.

Examples of Cuntz semigroups III

Example 3 (Reduced group C^* -algebra $C^*_{red}(\mathbb{F}_n)$, revisited)

Amrutan, Gao, Elayavalli, Patchell (Invent. Math. 2025): $Cu(C^*_{red}(\mathbb{F}_n)) \cong \mathbb{N} \sqcup (0, \infty]$

Theorem (Antoine-Perera-T 2018, 2020)

The category of ω -domain semigroups is bicomplete, and the functor $Cu(\cdot)$ preserves inductive limits and products.

Example 4 (Uniformly hyperfinite (UHF) algebras)

Consider the inductive limit

$$M_{2^{\infty}} := \varinjlim \left(M_2(\mathbb{C}) \xrightarrow{x \mapsto x \otimes 1} M_2(\mathbb{C}) \otimes M_2(\mathbb{C}) \to \ldots \bigotimes M_2(\mathbb{C}) \ldots \right)$$

Since $\bigotimes_n M_2(\mathbb{C}) \otimes \mathcal{K} \cong \mathcal{K}$, and $Cu(\cdot)$ preserves $\underset{\longleftarrow}{\underline{\lim}}^n$, get

$$\operatorname{\mathsf{Cu}}(M_{2^\infty})\cong \varinjlim \left(\overline{\mathbb{N}}\xrightarrow{x\mapsto 2x} \overline{\mathbb{N}}\to \ldots\right)\cong \mathbb{N}\Big[\frac{1}{2}\Big]\sqcup (0,\infty].$$

Examples of Cuntz semigroups IV

Example 4 (Uniformly hyperfinite (UHF) algebras, continued)

Similarly, can consider UHF algebra for supernatural number $\mathbf{p}=2^{n_1}3^{n_2}5^{n_3}7^{n_4}11^{n_5}\cdots$ with $n_1,n_2,\ldots\in\overline{\mathbb{N}}$, which has Cuntz semigroup $\mathbb{N}[\frac{1}{\mathbf{n}}]\sqcup(0,\infty]$.

For $n_1 = n_2 = \dots = \infty$, get universal UHF algebra Q with

$$Cu(Q) \cong \mathbb{Q}_+ \sqcup (0, \infty].$$

The Cuntz classes of positive elements in Q (and not $Q \otimes \mathcal{K}$) correspond to

$$Q_+/_{\sim_{\mathrm{Cu}}}\cong ig(\mathbb{Q}\cap [0,1]ig)\sqcup (0,1].$$

Examples of Cuntz semigroups V

Example 5 (II₁-factor)

Let N be a II_1 -factor, with its unique tracial state τ . For $p, q \in Proj(N)$, Murray-von Neumann showed:

$$egin{array}{ll} oldsymbol{
ho}\sim_{\operatorname{MvN}} oldsymbol{q} & :\Leftrightarrow & au(oldsymbol{
ho}) = au(oldsymbol{q}), \ oldsymbol{
ho} \precsim_{\operatorname{MvN}} oldsymbol{q} & :\Leftrightarrow & au(oldsymbol{
ho}) \leq au(oldsymbol{q}). \end{array}$$

Moreover, for every $t \in [0,1]$, there is p with $\tau(p) = t$. Thus

$$\mathsf{Proj}(N)_{/\sim_{\mathit{MVN}}}\cong [0,1].$$

The same holds in each $M_n(N)$, and we get

$$Proj(M_n(N))_{/\sim_{MVN}} \cong [0, n],$$

and then

$$V(N) \cong [0, \infty)$$
, and $Cu(N) \cong [0, \infty) \sqcup (0, \infty]$.

Murray-von Neumann vs Cuntz semigroup

Examples:

A	V(A)	Cu(A)
\mathbb{C}	N	$\overline{\mathbb{N}}:=\mathbb{N}\cup\{\infty\}$
C([0, 1])	\mathbb{N}	$Lsc([0,1],\overline{\mathbb{N}})$
$C^*_{\mathrm{red}}(\mathbb{F}_n)$	N	$\mathbb{N}\sqcup (0,\infty]$
$M_{2^{\infty}}$ Q II_1 -factor	$\mathbb{N}[rac{1}{2}] \ \mathbb{Q}_+ \ [0,\infty)$	$\mathbb{N}[rac{1}{2}] \sqcup (0,\infty] \ \mathbb{Q}_+ \sqcup (0,\infty] \ [0,\infty) \sqcup (0,\infty]$

- Cu(A) encodes more information than V(A) for example, Cu(A) always encodes the ideal lattice and tracial simplex
- Cu(A) is more difficult to compute than V(A) for example, $V(\cdot)$ is homotopy invariant, while $Cu(\cdot)$ is not

Semilattice structure of Cuntz semigroup 1

Definition

A unital C*-algebra A has **stable rank one** if the set of invertible elements in A is norm-dense.

Examples: \mathbb{C} , C([0,1]), $C^*_{red}(\mathbb{F}_n)$, UHF-algebras, II_1 -factors.

Theorem (Antoine-Perera-Robert-T, Duke Math. J. 2022)

If A is a separable C^* -algebra of stable rank one, then Cu(A) is a semilattice. Moreover,

$$x \wedge \bigvee^{\uparrow} y_n = \bigvee^{\uparrow} (x \wedge y_n)$$
 (continuous preframe)
 $x + (y \wedge z) = (x + y) \wedge (x + z)$ (inf-semilattice ordered)

Application for C*-algebras of stable rank one:

- Solution of the Global Glimm Problem.
- Verification of the Blackadar-Handelman Conjecture.
- Solution of the Rank Problem.

Semilattice structure of Cuntz semigroup 2

Theorem (Antoine-Perera-Robert-T, Duke Math. J. 2022)

If A is separable with stable rank one, then Cu(A) is semilattice.

Proof.

1. For C^* -algebras of stable rank (possibly nonseparable), we verify that Cu(A) has the Riesz interpolation property: Given x_1, x_2 and y_1, y_2 in Cu(A) satisfying

$$x_j \le y_k$$
 (for $j = 1, 2$ and $k = 1, 2$)

there exists $z \in Cu(A)$ such that

$$x_j \le z \le y_k$$
 (for $j = 1, 2$ and $k = 1, 2$)

2. Given $y_1, y_2 \in Cu(A)$, the set of lower bounds

$$L := \left\{ x \in \mathsf{Cu}(A) : x \le y_1, y_2 \right\}$$

is directed. Then $y_1 \wedge y_2 = \sup^{\uparrow} L$ exists as Cu(A) is dcpo.

Thank you!

- 1 Antoine, Perera, Robert, Thiel. C*-algebras of stable rank one and their Cuntz semigroups, **Duke Math. J.** 171 (2022).
- 2 Antoine, Perera, Thiel. Tensor products and regularity properties of Cuntz semigroups. Mem. Amer. Math. Soc. 251 (2018), no. 1199.
- Antoine, Perera, Thiel. Cuntz semigroups of ultraproduct C*-algebras. **J. Lond. Math. Soc.** 102 (2020).
- Coward, Elliott, Ivanescu. The Cuntz semigroup as an invariant for C*-algebras. J. Reine Angew. Math. 623 (2008).
- Cuntz. Dimension functions on simple C*-algebras. Math. Ann. 233 (1978)
- Gardella, Perera. The modern theory of Cuntz semigroups of C*-algebras. arxiv:2212.02290, 2022.