Schlagwort-Archive: C*-algebras

Traces on purely infinite C*-algebras

Von | Oktober 26, 2022

Does there exist a purely infinite C*-algebra that admits a tracial weight taking a finite, nonzero value? Here a C*-algebra is purely infinite if every element is properly infinite ( is Cuntz subequivalent to in ). This notion was introduced and studied by Kirchberg-Rørdam in ​[1]​ and ​[2]​. Further, a weight on a C*-algebra is… Weiterlesen »

Inductive limits of semiprojective C*-algebras

Von | Dezember 20, 2020

Question: Is every separable C*-algebra an inductive limit of semiprojective C*-algebras? This question was first raised by Blackadar in ​[1]​. If we think of C*-algebras as noncommutative topological spaces, then semiprojective C*-algebras are noncommutative absolute neighborhood retracts (ANRs). It is a classical result from shape theory that every metrizable space is homeomorphic to an inverse… Weiterlesen »