Let be a unital, simple C*-algebra of stable rank one. Does there exist a commutative sub-C*-algebra such that for every lower-semicontinuous function there exists an open subset such that for ? Here, denotes the Choquet simplex of normalized -quasitraces on (if is exact, then this is just the Choquet simplex of tracial states on ), and denotes the probability measure on induced by the restriction of to .
More specifically, one may ask if this is always the case for a Cartan subalgebra of .